Publications
Fadel, D., Loubeau, E., Moreno, A. & Sá Earp, H. Flows of geometric structures Journal für die reine und angewandte Mathematik (Crelles Journal), vol. 2024, no. 817, 2024, pp. 67-152. https://doi.org/10.1515/crelle-2024-0067
Moreno, A & Saavedra, J. On the Laplacian coflow of invariant G2-structures and its solitons. Matemática Contemporânea, v. 60, p. 185-224, 2024. https://mc.sbm.org.br/wp-content/uploads/sites/9/sites/9/2024/03/60-Artigo-8.pdf
Moreno, A. Harmonic G2-structures on almost Abelian Lie groups. Differential Geometry and its Applications, v. 91, p. 102060, 2023. https://doi.org/10.1016/j.difgeo.2023.102060
Loubeau, E., Moreno, A., Sá Earp, H. & Saavedra, J. (2021). Harmonic Sp(2)-invariant G2-structures on the 7-sphere. Journal of Geometric Analysis, v. 32, p. 240-289, 2022. https://link.springer.com/content/pdf/10.1007/s12220-022-00953-9.pdf
Moreno, A. J., & Sá Earp, H. The Weitzenböck formula for the Fueter-Dirac operator. Communications in Analysis and Geometry, v. 30, p. 153-205, 2022. https://intlpress.com/JDetail/1805783355654365186
Moreno, A. J., & Sá Earp, H. (2021). Explicit soliton for the Laplacian co-flow on a solvmanifold. São Paulo Journal of Mathematical Sciences, 15(1), 280-292. https://link.springer.com/article/10.1007/s40863-019-00134-7
Preprint
Clarke, A., Del Barco, V. & Moreno, A. G2-instantons on 2-step nilpotent Lie groups arXiv:2304.04284, 2023. To appear at Advances in Theoretical and Mathematical Physics.
Moreno, Andrés J., and Luis E. Portilla. "Homogeneous G2 and Sasakian instantons on the Stiefel 7-manifold." arXiv preprint:2406.06753 (2024).
PhD thesis and master dissertation
Moreno, A. J. (2019). Algebraic methods in G2-geometry, PhD thesis, University of Campinas.
Moreno, A. J. (2015). The Fueter operator and deformation of associative submanifolds, Master dissertation, University of Campinas. (In portuguese).