Darnell, Steve. Why structure prediction matters. DNAStar. 2020. www.dnastar.com/blog/structural-biology/why-structure-prediction-matters/
Jumper, J., Evans, R., Pritzel, A. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021). doi.org/10.1038/s41586-021-03819-2
Ma, Y., Liu, Y. & Cheng, J. Protein Secondary Structure Prediction Based on Data Partition and Semi-Random Subspace Method. Sci Rep 8, 9856 (2018). https://doi.org/10.1038/s41598-018-28084-8
L. Skipper. PROTEINS | Overview, Encyclopedia of Analytical Science (Second Edition), Elsevier 2005;p344-522.
Marcelino AM, Gierasch LM. Roles of beta-turns in protein folding: from peptide models to protein engineering. Biopolymers. 2008;89(5):380-391. doi:10.1002/bip.20960
A.L. Boyle. 3-Applications of de novo designed peptides, Peptide Applications in Biomedicine, Biotechnology and Bioengineering. Woodhead Publishing 2008;p51-86.
Powell, Victor. A visual explanation by Victor Powell. https://setosa.io/blog/2014/07/26/markov-chains/
Bystroff C., Krogh A. (2008) Hidden Markov Models for Prediction of Protein Features. In: Zaki M.J., Bystroff C. (eds) Protein Structure Prediction. Methods in Molecular Biology™, vol 413. Humana Press. https://doi.org/10.1007/978-1-59745-574-9_7
Martin, J., Gibrat, JF. & Rodolphe, F. Analysis of an optimal hidden Markov model for secondary structure prediction. BMC Struct Biol 6, 25 (2006). https://doi.org/10.1186/1472-6807-6-25
Pak, Marina & Markhieva, Karina & Novikova, Mariia & Petrov, Dmitry & Vorobyev, Ilya & Maksimova, Ekaterina & Kondrashov, Fyodor & Ivankov, Dmitry. (2021). Using AlphaFold to predict the impact of single mutations on protein stability and function. 10.1101/2021.09.19.460937.