[1] N. Rachel and M. Lakshmi, Landslide prediction with rainfall analysis using support vector machine, June 2016, vol. 9.
[2] P. Kainthura and N. Sharma, “Enhancing the study of landslide prone area through supervised analysis: a case study of varunavat parvat, uttarkashi, india.” [Online]. Available: 2018
[3] P. Kainthura, V. Singh, and S. Gupta, “Gis based model for monitoring and prediction of landslide susceptibility,” 2015.
[4] M.Marjanovic, B.Bajat, and M.Kovacevic, “Landslide susceptibility assessment with machine learning algorithms,” 2009.
[5] J. Zhao, Y. Liu, and M. Hu, “Optimisation algorithm for decision trees and the prediction of horizon displacement of landslides monitoring,” 2018.
[6] S. Miao, Q. Zhu, L. Zhang, C. L. B., Zhang, and M. Chen, “A knowledge-guided landslide deformation prediction approach based on svr,” 2015.
[7] B. S.-B. Wang, J. Lu, G.-N., Zhou, P.-G. Hou, S.-S., and ¨ S.-N. Xu, “Gis-based logistic regression for landslide susceptibility mapping of the zhongxian segment in the three gorges area, china, geomorphology,” pp. 115, 23–31, 2010. [Online]. Available: https://doi.org/10.1016/j.geomorph.2009.09.025
[8] C. Romer and M. Ferentinou, “Shallow landslide susceptibility assessment in a semiarid environment – a quaternary catchment of kwazulu-natal, south africa,” pp. 201, 29–44, 2016. [Online]. Available: https://doi.org/10.1016/j.enggeo.2015.12.013
[9] T. L. Saaty, “The analytic hierarchy process,” 1980.
[10] B. Q., C. Y., D. S., W. Q., Y. J., and J. Zhang, “An improved information value model based on gray clustering for landslide susceptibility mapping,” pp. 6, 18, 2017. [Online]. Available: https://doi.org/10.3390/ijgi6010018
[11] C. M., S. Pascale, R. G., and S. F., “Evaluation of prediction capability of the artificial neural networks for mapping landslide susceptibility in the turbolo river catchment (northern calabria, italy),” pp. 113, 236–250, 2014. [Online]. Available: https://doi.org/10.1016/j.catena.2013.08.006
[12] M. R. Mansouri Daneshvar, Landslide susceptibility zonation using analytical hierarchy process and GIS for the Bojnurd region, northeast of Iran, Landslides, 2014.
[13] K. D. P., A. M. K., S. S., and G. R. P, “A comparative study of conventional, ann black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility zonation in darjeeling himalayas,” 2006. [Online]. Available: https://doi.org/10.1016/j.enggeo.2006.03.004