Publications
Selected publications
Bertotti, B., L. Iess, and P. Tortora (2003). A test of general relativity using radio links with the Cassini spacecraft. Nature 425, 374–376. https://doi.org/10.1038/nature01997
Iess, L., N.J. Rappaport, R.A. Jacobson, P. Racioppa, D.J. Stevenson, et al. (2010). Gravity field, shape and moment of inertia of titan. Science 327, 1367–1369. https://doi.org/10.1126/science.1182583
Iess, L., R.A. Jacobson, M. Ducci, D.J. Stevenson, J.I. Lunine, et al. (2012). The tides of Titan. Science 337, 457–459. https://doi.org/10.1126/science.1219631
Iess, L., D.J. Stevenson, M. Parisi, D. Hemingway, R.A. Jacobson, et al. (2014). The gravity field and interior structure of Enceladus. Science 344, 78–80. https://doi.org/10.1126/science.1250551
Iess, L., W.M. Folkner, D. Durante, M. Parisi, Y. Kaspi, E. Galanti, et al. (2018). Measurement of Jupiter’s asymmetric gravity field, Nature 555, 220-222. https://doi.org/10.1038/nature25776
Iess, L., B. Militzer, Y. Kaspi, P. Nicholson, D. Durante, P. Racioppa, et al. (2019). Measurement and implications of Saturn’s gravity field and ring mass, Science 364, aat2965. https://doi.org/10.1126/science.aat2965
Durante, D., D.J. Hemingway, P. Racioppa, L. Iess, and D.J. Stevenson (2019). Titan’s gravity field and interior structure after Cassini, Icarus 326, 123–132. https://doi.org/10.1016/j.icarus.2019.03.003
Cappuccio, P., V. Notaro, A. Di Ruscio, L. Iess, A. Genova, D. Durante, et al. (2020). Report on first inflight data of BepiColombo's Mercury Orbiter Radio-science Experiment, IEEE Transactions on Aerospace and Electronic Systems 56. https://doi.org/10.1109/TAES.2020.3008577
Durante, D., T. Guillot, L. Iess, D.J. Stevenson, C.R. Mankovich, S. Markham, et al. (2022). Juno spacecraft gravity measurements provide evidence for normal modes of Jupiter, Nature Communications 13, 4632. https://doi.org/10.1038/s41467-022-32299-9
Park. R.S., R.A. Jacobson, L. Gomez Casajus, F. Nimmo, J.T. Keane, A.I Ermakov, et al. (2025). Io’s tidal response precludes a shallow magma ocean. Nature 638, 69–73. https://doi.org/10.1038/s41586-024-08442-5
Cassini-Huygens, Saturn, & icy moons
Bertotti, B., L. Iess, and P. Tortora (2003). A test of general relativity using radio links with the Cassini spacecraft. Nature 425, 374–376. https://doi.org/10.1038/nature01997
Iess, L., N.J. Rappaport, P. Tortora, J.I. Lunine, J.W. Armstrong, et al. (2007). Gravity field and interior of Rhea from Cassini data analysis. Icarus 190. https://doi.org/10.1016/j.icarus.2007.03.027
Rappaport, N.J., L. Iess, J. Wahr, J.I. Lunine, J.W. Armstrong, S. Asmar, et al. (2008). Can Cassini detect a subsurface ocean in Titan from gravity measurements?. Icarus 194, 711–720. https://doi.org/10.1016/j.icarus.2007.11.024
Iess, L., N.J. Rappaport, R.A. Jacobson, P. Racioppa, D.J. Stevenson, et al. (2010). Gravity field, shape and moment of inertia of titan. Science 327, 1367–1369. https://doi.org/10.1126/science.1182583
Iess, L., R.A. Jacobson, M. Ducci, D.J. Stevenson, J.I. Lunine, et al. (2012). The tides of Titan. Science 337, 457–459. https://doi.org/10.1126/science.1219631
Iess, L., D.J. Stevenson, M. Parisi, D. Hemingway, R.A. Jacobson, et al. (2014). The gravity field and interior structure of Enceladus. Science 344, 78–80. https://doi.org/10.1126/science.1250551
Tortora, P., M. Zannoni, D. Hemingway, F. Nimmo, R.A. Jacobson, L. Iess, and M. Parisi (2016). Rhea gravity field and interior modeling from Cassini data analysis. Icarus 264, 264–273. https://doi.org/10.1016/j.icarus.2015.09.022
Iess, L., B. Militzer, Y. Kaspi, P. Nicholson, D. Durante, P. Racioppa, et al. (2019). Measurement and implications of Saturn’s gravity field and ring mass, Science 364, aat2965. https://doi.org/10.1126/science.aat2965
Galanti, E., Y. Kaspi, Y. Miguel, T. Guillot, D. Durante, P. Racioppa, and L. Iess (2019). Saturn’s deep atmosphere revealed by the Cassini Grand Finale gravity measurements, Geophysical Research Letters 46, https://doi.org/10.1029/2018GL078087
Durante, D., D.J. Hemingway, P. Racioppa, L. Iess, and D.J. Stevenson (2019). Titan’s gravity field and interior structure after Cassini, Icarus 326, 123–132. https://doi.org/10.1016/j.icarus.2019.03.003
Di Ruscio, A., A. Fienga, D. Durante, L. Iess, J. Laskar, and M. Gastineau (2020). Analysis of Cassini radio tracking data for the construction of INPOP19a: A new estimate of the Kuiper belt mass, Astronomy and Astrophysics 640. https://doi.org/10.1051/0004-6361/202037920
Fienga, A., A. Di Ruscio, L. Bernus, P. Deram, D. Durante, J. Laskar, and L. Iess (2020). New constraints on the location of P9 obtained with the INPOP19a planetary ephemeris, Astronomy and Astrophysics 640. https://doi.org/10.1051/0004-6361/202037919
Markham, S., D. Durante, L. Iess, and D.J. Stevenson (2020). Possible evidence of p-modes in Cassini measurements of Saturn’s gravity field. The Planetary Science Journal 1, 27.https://doi.org/10.3847/PSJ/ab9f21
Juno & Jupiter
Parisi, M., E. Galanti, S. Finocchiaro, L. Iess, and Y. Kaspi (2016). Probing the depth of Jupiter's Great Red Spot with the Juno gravity experiment. Icarus 267, 232–242. https://doi.org/10.1016/j.icarus.2015.12.011
Durante, D., T. Guillot, and L. Iess (2017). The effect of Jupiter oscillations on Juno gravity measurements, Icarus 282, 174–182, https://doi.org/10.1016/j.icarus.2016.09.040
Galanti, E., D. Durante, S. Finocchiaro, L. Iess, and Y. Kaspi (2017). Estimating Jupiter’s Gravity Field Using Juno Measurements, Trajectory Estimation Analysis, and a Flow Model Optimization, The Astronomical Journal 152:2. https://doi.org/10.3847/1538-3881/aa72db
Bolton, S. J., A. Adriani, V. Adumitroaie, M. Allison, J. Anderson, S. Atreya, et al. (2017). Jupiter’s interior and deep atmosphere: The initial pole-to-pole passes with the Juno spacecraft, Science 356, 821-825. https://doi.org/10.1126/science.aal2108
Folkner, W.M., L. Iess, J.D. Anderson, S.W. Asmar, D.R. Buccino, D. Durante, et al. (2017). Jupiter gravity field estimated from the first two Juno orbits, Geophysical Research Letters 44. https://doi.org/10.1002/2017GL073140
Iess, L., W.M. Folkner, D. Durante, M. Parisi, Y. Kaspi, E. Galanti, et al. (2018). Measurement of Jupiter’s asymmetric gravity field, Nature 555, 220-222. https://doi.org/10.1038/nature25776
Kaspi, Y., E. Galanti, W.B. Hubbard, D.J. Stevenson, L. Iess, T. Guillot, et al. (2018). The extension of Jupiter’s jet to a depth of thousands of kilometers, Nature 555, 223-226. https://doi.org/10.1038/nature25793
Guillot, T., Y. Miguel, B. Militzer, W.B. Hubbard, E. Galanti, Y. Kaspi, et al. (2018). A suppression of differential rotation in Jupiter’s deep interior, Nature 555, 227–230. https://doi.org/10.1038/nature25775
Galanti, E., Y. Kaspi, F. Simons, D. Durante, M. Parisi, and S.J. Bolton (2019). Determining the depth of Jupiter’s Great Red Spot: a Slepian approach, The Astrophysical Journal Letters 874, L24. https://doi.org/10.3847/2041-8213/ab1086
Notaro, V., D. Durante, and L. Iess (2019). On the determination of Jupiter’s satellite-dependent tides with Juno gravity data, Planetary and Space Science 175, 34–40. https://doi.org/10.1016/j.pss.2019.06.001
Durante, D. (2019). Effect of Juno’s solar panel bending on gravity measurements, Journal of Guidance, Control, and Dynamics 42:12, 2694–2699. https://doi.org/10.2514/1.G004503
Serra, D., G. Lari, G. Tommei, D. Durante, L. Gomez Casajus, V. Notaro, et al. (2019). A Solution of Jupiter's Gravitational Field from Juno Data with the ORBIT14 Software, Monthly Notices of the Royal Astronomical Society 490, 766–772. https://doi.org/10.1093/mnras/stz2657
Durante, D., M. Parisi, D. Serra, M. Zannoni, V. Notaro, P. Racioppa, et al. (2020). Jupiter’s gravity field halfway through the Juno mission. Geophysical Research Letters 47, 4. https://doi.org/10.1029/2019GL086572
Notaro, V., D. Durante, L. Iess, and S. Bolton (2021). Determination of Jupiter's mass from Juno radio tracking data, Journal of Guidance, Control, and Dynamics 44, 5. https://doi.org/10.2514/1.G005311
Moirano, A., L. Gomez Casajus, M. Zannoni, D. Durante, and P. Tortora (2021). Morphology of the Io Plasma Torus from Juno Radio Occultations, Journal of Geophysical Research: Space Physics 126, e2021JA029190. https://doi.org/10.1029/2021JA029190
Parisi, M., Y. Kaspi, E. Galanti, D. Durante, S.J. Bolton, S.M. Levin, et al. (2021). The depth of Jupiter’s Great Red Spot constrained by the Juno gravity overflights, Science 374, 964–968. https://doi.org/10.1126/science.abf1396
Miguel, Y., M. Bazot, T. Guillot, S. Howard, E. Galanti, Y. Kaspi, et al. (2022). Jupiter’s inhomogeneous envelope, Astronomy and Astrophysics 662, A18. https://doi.org/10.1051/0004-6361/202243207
Durante, D., T. Guillot, L. Iess, D.J. Stevenson, C.R. Mankovich, S. Markham, et al. (2022). Juno spacecraft gravity measurements provide evidence for normal modes of Jupiter, Nature Communications 13, 4632. https://doi.org/10.1038/s41467-022-32299-9
Gomez Casajus, L., A.I. Ermakov, M. Zannoni, J.T. Keane, D. Stevenson, et al. (2022). The gravity field of Ganymede after the Juno’s extended mission, Geophysical Research Letters 49, e2022GL099475. https://doi.org/10.1029/2022GL099475
Kaspi, Y., E. Galanti, R. Park, K. Duer, N. Gavriel, D. Durante, et al. (2023). Observational evidence for cylindrically oriented zonal flows on Jupiter. Nature Astronomy 7, 1463-1472, https://doi.org/10.1038/s41550-023-02077-8
Lari, G., M. Zannoni, D. Durante, R. Park, and G. Tommei (2024). Determination of Jupiter’s pole orientation from Juno radio science data, Aerospace 11(2), 124. https://doi.org/10.3390/aerospace11020124
Durante, D., P. Cappuccio, I. Di Stefano, M. Zannoni, L. Gomez Casajus, et al. (2024). Testing general relativity with Juno at Jupiter. The Astrophysical Journal 971(2), 145. https://doi.org/10.3847/1538-4357/ad5ff5
Park. R.S., R.A. Jacobson, L. Gomez Casajus, F. Nimmo, J.T. Keane, A.I Ermakov, et al. (2025). Io’s tidal response precludes a shallow magma ocean. Nature 638, 69–73. https://doi.org/10.1038/s41586-024-08442-5
Bepicolombo & Mercury
Iess, L., S. Asmar, and P. Tortora (2009). MORE: An advanced tracking experiment for the exploration of Mercury with the mission BepiColombo. Acta Astronautica 65, 666–675. https://doi.org/10.1016/j.actaastro.2009.01.049
Imperi, L., and L. Iess (2017). The determination of the post-Newtonian parameter γ during the cruise phase of BepiColombo. Classical and Quantum Gravity 34. https://doi.org/10.1088/1361-6382/aa606d
Imperi, L., L. Iess, and M.J. Mariani (2018). An analysis of the geodesy and relativity experiments of BepiColombo. Icarus 301, 9–25. https://doi.org/10.1016/j.icarus.2017.09.008
Cappuccio, P., V. Notaro, A. Di Ruscio, L. Iess, A. Genova, D. Durante, et al. (2020). Report on first inflight data of BepiColombo's Mercury Orbiter Radio-science Experiment, IEEE Transactions on Aerospace and Electronic Systems 56. https://doi.org/10.1109/TAES.2020.3008577
Di Stefano, I., P. Cappuccio, and L. Iess (2020). The BepiColombo solar conjunction experiments revisited. Classical and Quantum Gravity 38. https://doi.org/10.1088/1361-6382/abd301
Iess, L., S.W. Asmar, P. Cappuccio, G. Cascioli, F. De Marchi, et al. (2021). Gravity, Geodesy and Fundamental Physics with BepiColombo’s MORE Investigation. Space Science Reviews 217. https://doi.org/10.1007/s11214-021-00800-3
Genova, A., H. Hussmann, T. Van Hoolst, D. Heyner, L. Iess, et al. (2021). Geodesy, Geophysics and Fundamental Physics Investigations of the BepiColombo Mission. Space Science Reviews 217. https://doi.org/10.1007/s11214-021-00808-9
Cappuccio, P., I. Di Stefano, G. Cascioli, and L. Iess (2021). Comparison of light-time formulations in the post-Newtonian framework for the BepiColombo MORE experiment. Classical and Quantum Gravity 38 227001. https://doi.org/10.1088/1361-6382/ac2b0a
Di Stefano, I., P. Cappuccio, and L. Iess (2023). Precise modeling of non-gravitational accelerations of the spacecraft BepiColombo during cruise phase. Journal of spacecraft and rockets 60. https://doi.org/10.2514/1.A35704
De Filippis, U., C. Lefevre, M. Lucente, C. Magnafico, F. Santoli, P. Cappuccio, et al. (2024). Pseudo-drag-free system simulation for BepiColombo radio science using accelerometer data. Journal of guidance, control and dynamics 47. https://doi.org/10.2514/1.G007916
Cappuccio, P., T. Imamura, I. Doria, S. Chiba, I. Di Stefano, et al. (2024). Probing solar wind velocity from simultaneous superior solar conjunction radio science experiments of BepiColombo and Akatsuki missions. Monthly Notices of the Royal Astronomical Society 533, 1560–1567. https://doi.org/10.1093/mnras/stae1929
De Filippis, U., C. Levefre, M. Lucente, C. Magnafico, and F. Santoli (2024). Characterization of the outgassing event during BepiColombo second Venus flyby using Italian Spring Accelerometer data. Acta astronautica 226, 11–19. https://doi.org/10.1016/j.actaastro.2024.09.062
JUICE, Jupiter, & Icy moons
Cappuccio, P., A. Hickey, D. Durante, M. Di Benedetto, L. Iess, C. Plainaki, et al. (2020). Ganymede’s gravity field, exosphere, rotations and tides from JUICE’s 3GM experiment simulation, Planetary and Space Science 187. https://doi.org/10.1016/j.pss.2020.104902
De Marchi, F., G. Di Achille, G. Mitri, P. Cappuccio, I. Di Stefano, et al. (2021). Observability of Ganymede's gravity anomalies related to surface features by the 3GM experiment onboard ESA's JUpiter ICy moons Explorer (JUICE) mission. Icarus 354. https://doi.org/10.1016/j.icarus.2020.114003
Cappuccio, P., M. di Benedetto, D. Durante, and L. Iess (2022). Callisto and Europa gravity measurements from JUICE 3GM experiment simulation, The Planetary Science Journal 3, 199. https://doi.org/10.3847/PSJ/ac83c4
Di Stefano, I., P. Cappuccio, M. Di Benedetto, and L. Iess (2022). A test of general relativity with ESA's JUICE mission. Advances in Space Research 70. https://doi.org/10.1016/j.asr.2022.05.005
De Marchi, F., P. Cappuccio, G. Mitri, and L. Iess (2022). Frequency-dependent Ganymede’s tidal Love number detection by JUICE’s 3GM experiment and implications for the subsurface ocean thickness. Icarus 386. https://doi.org/10.1016/j.icarus.2022.115150
De Filippis, U., M. Di Bendetto, L. Iess, P. Cappuccio, M. Pecora, et al. (2024). Monitoring JUICE deployment operations with high-accuracy accelerometer data. Acta Astronautica 225, 719–728. https://doi.org/10.1016/j.actaastro.2024.09.047
Cappuccio, P., A. Sesta, M. Di Benedetto, D. Durante, U. De Filippis, et al. (2025). Analysis of first radio science data from the KaT instrument of the 3GM Experiment During JUICE's Early Cruise Phase, Aerospace 2025, 12(1), 56. https://doi.org/10.3390/aerospace12010056
VERITAS & Venus
Cascioli, G., F. De Marchi, P. Racioppa, D. Durante, L. Iess, S. Hensley, et al. (2021). The determination of the rotational state and interior structure of Venus with VERITAS, The Planetary Science Journal 2, 220.https://doi.org/10.3847/PSJ/ac26c0
Cascioli, G., D. Durante, E. Mazarico, M. Wallace, S. Hensley, and S. Smrekar (2023). Improving the VERITAS orbit reconstruction using radar tie points, Journal of Spacecraft and Rockets 60, 366-373. https://doi.org/10.2514/1.A35499
De Marchi, F., G. Cascioli, T. Ely, L. Iess, E. A. Burt, S. Hensley, and E. Mazarico (2023). Testing the gravitational redshift with an inner solar probe: The VERITAS case, Physical Review D 107. https://doi.org/10.1103/PhysRevD.107.064032
Cascioli, G., J. P. Renaud, E. Mazarico, D. Durante, L. Iess, S. Goossens, and S. Smrekar (2023). Constraining the Venus interior structure with future VERITAS measurements of the gravitational atmospheric loading. The Planetary Science Journal 4, 65. https://doi.org/10.3847/PSJ/acc73c
Giuliani, F., D. Durante, G. Cascioli, F. De Marchi, L. Iess, E. Mazarico, and S. Smrekar (2025). Mapping Venus gravity field with the VERITAS mission, The planetary Science Journal 6:11. https://doi.org/10.3847/PSJ/ad991a
UOP & Uranus
Iorio, L., A.P. Girija, and D. Durante (2023). One EURO for Uranus: the Elliptical Uranian Relativity Orbiter mission, Monthly Notices of the Royal Astronomical Society 523, 3595–3614. https://doi.org/10.1093/mnras/stad1446
Di Stefano, I., D. Durante, P. Cappuccio, and P. Racioppa (2024). Radio science experiments during a cruise phase to Uranus, Aerospace 11(4), 282. https://doi.org/10.3390/aerospace11040282
Spacecraft radio tracking & navigation
Iess, L., M. Di Benedetto, N. James, M. Mercolino, L. Simone, and P. Tortora (2014). Astra: Interdisciplinary study on enhancement of the end-to-end accuracy for spacecraft tracking techniques. Acta Astronautica 94, 699-707. https://doi.org/10.1016/j.actaastro.2013.06.011
Di Benedetto, M., L. Imperi, D. Durante, M. Dougherty, L. Iess, V. Notaro, and P. Racioppa (2019). Augmenting NASA Europa Clipper by a small probe: Europa Tomography Probe (ETP) mission concept, Acta Astronautica 165, 211–218. https://doi.org/10.1016/j.actaastro.2019.07.027
Notaro, V., M. Di Benedetto, G. Colasurdo, D. Durante, P. Gaudenzi, L. Imperi, et al. (2020). A small spacecraft to probe the interior of the Jovian moon Europa: Europa Tomography Probe (ETP) system design, Acta Astronautica 166, 137–146. https://doi.org/10.1016/j.actaastro.2019.10.017
Molli, S., D. Durante, G. Boscagli, G. Cascioli, P. Racioppa, et al. (2023). Design and Performance of a Martian Autonomous Navigation System based on a Smallsat Constellation. Acta Astronautica 203, 112-124. https://doi.org/10.1016/j.actaastro.2022.11.041
Plumaris, M., F. De Marchi, G. Cascioli, and L. Iess (2024). Testing theories of gravitation with the Interstellar Probe Radio Experiment, Advances in Space Research 73, 2763–2773. https://doi.org/10.1016/j.asr.2023.11.053
De Marchi, F., M. K. Plumaris, E. A. Burt, and L. Iess (2024). An Algorithm to Estimate the Power Spectral Density from Allan Deviation, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 71, 506–515. https://doi.org/10.1109/TUFFC.2024.3372395
Zurria, A., D. Durante, and L. Iess (2025). Preliminary Design and Performance Assessment of a Semi-Autonomous Global Navigation Satellite System on Mars, Acta Astronautica 229, 260-269. https://doi.org/10.1016/j.actaastro.2025.01.035
Moonlight
Di Benedetto, M., G. Boscagli, F. De Marchi, D. Durante, F. Santi, et al. (2023). An architecture for a lunar navigation system: orbit determination and time synchronization. Proceedings of the 8th International ESA colloquium on Scientific and Fundamental Aspects of GNSS, Bulgaria, Sofia.
Iess, L., M. Di Benedetto, G. Boscagli, P. Racioppa, A. Sesta, et al. (2023). High Performance Orbit Determination and Time Synchronization for Lunar Radio Navigation System. Proceedings of the 36th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2023), September 2023, pp. 4029-4050. https://doi.org/10.33012/2023.19428
Molli, S., P. Tartaglia, Y. Audet, A. Sesta, M. Plumaris, et al. (2023). Navigation performance of low lunar orbit satellites using a lunar radio navigation satellite system. Proceedings of the 36th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2023), September 2023, pp. 4051-4083. https://doi.org/10.33012/2023.19370
Audet, Y., F.T. Melman, S. Molli, A. Sesta, M. Plumaris, et al. (2024). Positioning of a lunar surface rover on the south pole using LCNS and DEMs. Advances in Space Research, 74:2532–2550. https://doi.org/10.1016/j.asr.2024.06.022
Antonietti, E., G. Lambiase, A. Sesta, D. Durante, C. Albanese, et al. (2024). Analysis of Orbit Perturbation and Atmospheric Effects for Advanced ODTS Services in Elliptical Lunar Frozen Orbits, 37th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2024), Baltimore, Maryland. https://doi.org/10.33012/2024.19808