PUBLICATIONS IN REFEREED JOURNALS:
L. Ghilotti, F. Camerlenghi, T. Rigon (2025). Bayesian analysis of product feature allocation models. Journal of the Royal Statistical Society Series B, accepted for publication. Available at: https://arxiv.org/abs/2408.15806
M. Beraha, R. Argiento, F. Camerlenghi, A. Guglielmi (2025). Bayesian mixture models with repulsive and attractive atoms. Journal of the Royal Statistical Society Series B, accepted for publication. Available at the following link.
A. Colombi, R. Argiento, F. Camerlenghi, L. Paci (2025). Hierarchical mixture of finite mixtures. Bayesian Analysis, accepted for publication. Available at the following link.
F. Camerlenghi, E. Dolera, S. Favaro, E. Mainini (2024). Wasserstein Posterior Contraction Rates in Non-Dominated Bayesian Nonparametric Models. Annales de l'Institut de Henri Poincaré - Probabilités et Statistiques, to appear. Available at: https://imstat.org/journals-and-publications/annales-de-linstitut-henri-poincare/annales-de-linstitut-henri-poincare-accepted-papers/
F. Camerlenghi, S. Favaro, L. Masoero, T. Broderick (2024). Scaled process priors for Bayesian nonparametric estimation of the unseen genetic variation. Journal of the American Statistical Association, 119, 320-331.
C. Balocchi, F. Camerlenghi, S. Favaro (2024). A Bayesian nonparametric approach to species sampling problems with ordering. Bayesian Analysis, to appear. Available at: https://arxiv.org/abs/2203.07342
F. Camerlenghi, R. Corradin, A. Ongaro (2023). Contaminated Gibbs-type priors. Bayesian Analysis, 19, 347-376.
F. Denti, F. Camerlenghi, M. Guindani, A. Mira (2023). A Common Atom Model for the Bayesian Nonparametric Analysis of Nested Data. Journal of the American Statistical Association, 118, 405-416.
L. Masoero, F. Camerlenghi, S. Favaro, T. Broderick (2022). More for less: predicting and maximizing genetic variant discovery via Bayesian nonparamterics. Biometrika, 109, 17-32.
F. Camerlenghi, S. Favaro (2021). On Johnson’s “Sufficientness” Postulates for Feature-Sampling Models. Mathematics, special issue “Bayesian Predictive Inference and Related Asymptotics—Festschrift for Eugenio Regazzini's 75th Birthday”, 9, 2891.
F. Ayed, M. Battiston, F. Camerlenghi, S. Favaro (2021). Consistent estimation of small masses in feature sampling. Journal of Machine Learning Research, 22, 1-28.
F. Ayed, M. Battiston, F. Camerlenghi, S. Favaro (2021). On consistent and rate optiaml estimation of the missing mass. Annales de l'Institut de Henri Poincaré - Probabilités et Statistiques, 57, 1476-1494.
F. Camerlenghi, C. Macci, E. Villa (2021). Asymptotic behavior of mean density estimators based on a single observation: the Boolean model case. Annals of the Institute of Statistical Mathematics, 73, 1011-1035.
F. Camerlenghi, A. Lijoi, I. Prünster (2021). Survival analysis via hierarchically dependent mixture hazards. The Annals of Statistics, 49, 863-884.
F. Camerlenghi, S. Favaro, Z. Naulet, F. Panero (2021). Optimal disclosure risk assessment. The Annals of Statistics, 49, 723-744. (arxiv link)
F. Camerlenghi, B. Dumitrascu, F. Ferrari, B. E. Engelhardt, S. Favaro (2020). Bayesian nonparametric multi-armed bandits for single cell experimental design. The Annals of Applied Statistics, 14, 2003-2019.
F. Ayed, M. Battiston, F. Camerlenghi (2020). An information theoretic approach to post randomization methods under differential privacy. Statistics & Computing, 30, 1347-1361.
F. Ayed, M. Battiston, F. Camerlenghi, S. Favaro (2019). A Good-Turing estimator for feature allocation models. Electronic Journal of Statistics, 13, 3775-3804.
F. Camerlenghi, D.B. Dunson, A. Lijoi, I. Prünster, A. Rodriguez (2019). Latent nested nonparametric priors. Bayesian Analysis, 14, 1303-1356. (with discussion).
F. Camerlenghi, A. Lijoi, P. Orbanz, I. Prünster (2019). Distribution theory for hierarchical processes. The Annals of Statistics, 47, 67-92.
F. Camerlenghi, A. Lijoi, I. Prünster (2018). Bayesian nonparametric inference beyond the Gibbs-type framework. Scandinavian Journal of Statistics, 45, 1062-1091.
F. Camerlenghi, E. Villa (2018). Large and moderate deviations for kernel-type estimators of the mean density of Boolean models. Electronic Journal of Statistics, 12, 427-460.
F. Camerlenghi, A. Lijoi, I. Prünster (2017). Bayesian prediction with multiple-sample information. Journal of Multivariate Analysis, 156, 18-28.
F. Camerlenghi, C. Macci, E. Villa (2016). Asymptotic results for multivariate estimators of the mean density of random closed sets. Electronic Journal of Statistics 10, 2066-2096.
F. Camerlenghi, E. Villa (2015). Optimal bandwidth of the “Minkowski content”-based estimator of the mean density of random closed sets: theoretical results and numerical experiments. Journal of Mathematical Imaging and Vision , 53, 264-287;
F. Camerlenghi, V. Capasso, E. Villa (2014). Numerical experiments for the estimation of mean densities of random closed sets. Image Analysis and Stereology, 33, 83-94;
F. Camerlenghi, V. Capasso, E. Villa (2014). On the estimation of the mean density of random closed sets. Journal of Multivariate Analysis, 125, 65-88.
CONFERENCE PROCEEDINGS:
G. Beltramin, M. Beraha, F. Camerlenghi, L. Ghilotti (2025). A Bayesian Nonparametric Approach to Multiview Clustering. In Statistics for Innovation II, SIS 2025, Short Papers, Contributed Sessions 1 (pp. 153-158). Springer.
M. Beraha, F. Camerlenghi, L. Ghilotti (2024). Sufficientness Postulates for Generalized Indian Buffet Processes. In Methodological and Applied Statistics and Demography II, SIS 2024, Short Papers, Solicited Sessions (pp. 32-36). Springer Cham.
R. Cogo, F. Camerlenghi, T. Rigon (2023). Hierarchical processes in survival analysis. In Book of the Short Papers SIS 2023 (pp. 304-309). Pearson.
F. Denti, F. Camerlenghi, M. Guindani, A. Mira (2022). Clustering artists based on the energy distributions of their songs on Spotify via the Common Atoms Model. In Book of the short papers- SIS 2022 (pp. 121-126). Pearson.
F. Camerlenghi, R. Corradin, A. Ongaro (2021). On the convex combination of a Dirichlet process with a diffuse probability measure. In Book of short papers - SIS 2021 (pp.739-744). Pearson.
L. Masoero, F. Camerlenghi, S. Favaro, T. Broderick (2021). Bayesian nonparametric prediction: from species to features. In Book of short papers - SIS 2021 (pp.727-732). Pearson.
F. Camerlenghi, A. Lijoi, I. Prünster (2020). Bayesian nonparametric prediction with multi-sample data. In: La Rocca M., Liseo B., Salmaso L. (eds) Nonparametric Statistics. ISNPS 2018. Springer Proceedings in Mathematics & Statistics, vol 339. Springer, Cham.
F. Camerlenghi, C. Carota, S. Favaro (2019). Bayesian nonparametric measures of disclosure risk. In Book of Short Papers SIS2019 Smart Statistics for Smart Applications, 119-124.
F. Ayed, M. Battiston, F. Camerlenghi (2019). A formal approach to data swapping and disclosure limitation techniques. In Book of Short Papers SIS2019 Smart Statistics for Smart Applications, 47-54.
F. Camerlenghi, S. Favaro, L. Masoero (2019). Hierarchies of nonparametric priors. In Book of Short Papers SIS2019 Smart Statistics for Smart Applications, 125-132.
F. Camerlenghi, S. Favaro, Z. Naulet, F. Panero (2019). Issues with nonparametric disclosure risk assessment. In Book of Short Papers SIS2019 Smart Statistics for Smart Applications, 133-139.
F. Camerlenghi, A. Lijoi, I. Prünster (2018). Density estimation via hierarchies of nonparametric priors. In JSM Proceedings, Section on Bayesian Statistical Science. Alexandria, VA: American Statistical Association, 2596-2605.
M. Battiston, F. Camerlenghi, E. Dolera, S. Favaro (2018). Estimating the number of unseen species under heavy tails. Poceedings of the 49th Scientific meeting of the Italian Statistical Society.
F. Camerlenghi, A. Lijoi, I. Prünster (2017). On some distributional properties of hierarchical processes. In JSM Proceedings, Section on Bayesian Statistical Science. Alexandria, VA: American Statistical Association.
F. Camerlenghi, I. Pruenster, M. Ruggiero (2016). On time-dependent Gibbs-type random probability measures. In JSM Proceedings, Section on Nonparametric Statistics. Alexandria, VA: American Statistical Association.
OTHER PUBLICATIONS:
F. Camerlenghi (2019). Hierarchical and nested random probability measures with statistical applications. Best Phd Thesis In Statistics And Applications. Demography. Statistics. Applied Statistics. Cleup.
SUBMITTED MANUSCRIPTS:
M. Beraha, F. Camerlenghi, L. Ghilotti (2025+). Bayesian calculus and predictive characterizations of extended feature allocation models. Submitted. Available at: https://arxiv.org/abs/2502.10257
A. Colombi, R. Argiento, F. Camerlenghi, L. Paci (2025+). How many unseen species are in multiple areas? Sumbitted. Available at: https://arxiv.org/abs/2502.04122
F. Camerlenghi, R. Corradin, A. Ongaro (2024+). Nested compound random measures. Sumbitted. Available at: https://arxiv.org/abs/2410.06394
M. Beraha, F. Camerlenghi (2024+). On the Palm distribution of superposition of point processes. Working projects. Available at: https://arxiv.org/abs/2409.14753