33. A Spatial Kinetic Model of Crowd Evacuation Dynamics with Infectious Disease Contagion, J.P. Agnelli, B. Buffa, D. Knopoff, G. Torres, Bulletin of Mathematical Biology, Vol. 85, article 23, doi: 10.1007/s11538-023-01127-6, (2023).
32. Mathematical models for dengue fever epidemiology: A 10-year systematic review, M. Aguiar, V. Anam, K. Blyuss, C. Estadilla, B. Guerrero, D. Knopoff, B. Kooi, A. Srivastav, V. Steindorf, N. Stollenwerk, Physics of Life Reviews, Vol. 40, pp. 65-92, doi: 10.1016/j.plrev.2022.02.001, (2022),
31. A multiscale network-based model of contagion dynamics: heterogeneity, spatial distancing and vaccination, M. Aguiar, G. Dosi, D. Knopoff and M. Virgillito, Mathematical Models and Methods in Applied Sciences, (2021), doi: 10.1142/S0218202521500524
30. Modeling Dengue Immune Responses Mediated by Antibodies: a Qualitative Study, A. Sebayang, H. Fahlena, V. Anam, D. Knopoff, N. Stollenwerk, M. Aguiar and E. Soewono, Biology, Vol. 10 No. 941, doi: 10.3390/biology10090941, (2021).
29. Critical fluctuations in epidemic models explain COVID-19 post-lockdown dynamics, M. Aguiar, J.B Van Dierdonck, J. Mar, N. Cusimano, D. Knopoff, V. Anam and N. Stollenwerk, Scientific Reports, Vol. 11 No. 1, doi: 10.1038/s41598-021-93366-7, (2021).
28. What is life? A perspective of the mathematical kinetic theory of active particles, N. Bellomo, D. Burini, G. Dosi, L. Gibelli, D. Knopoff, N. Outada, P. Terna and M. Virgillito, Mathematical Models and Methods in Applied Sciences, Vol. 30 No. 8, doi: 10.1142/S0218202521500408, (2021).
27. Cherry Picking: Consumer Choices in Swarm Dynamics, Considering Price and Quality of Goods, D. Knopoff, V. Secchini, P. Terna, Symmetry, Vol. 12 No. 1912, doi: 10.3390/sym12111912, (2020).
26. A multiscale model of virus pandemic: Heterogeneous interactive entities in a globally connected world, N. Bellomo, R. Bingham, M. Chaplain, G. Dosi, G. Forni, D. Knopoff, J. Lowengrub, R. Twarock, M. Virgillito, Mathematical Models and Methods in Applied Sciences, Vol. 30 No. 8, pp. 4591-1691, doi: 10.1142/S0218202520500323, (2020).
25. Parameter Estimation and Measurement of Social Inequality in a Kinetic Model for Wealth Distribution, B. Buffa, D. Knopoff, G. Torres, Mathematics, Vol. 8, No. 786, doi: 10.3390/math8050786, (2020).
24. Kinetic Theory and Swarming Tools to Modeling Complex Systems—Symmetry problems in the Science of Living Systems - Editorial and Research Perspectives, N. Bellomo, D. Knopoff, P. Terna, Symmetry, Vol. 12 No. 456, doi: 10.3390/sym12030456, (2020).
23. Swarms dynamics towards a systems approach to social sciences and behavioral economy, N. Bellomo, S. De Nigris, D. Knopoff, M. Morini, P. Terna, Networks and Heterogeneous Media, Vol. 15 No. 3, pp. 353-368, doi: 10.3934/nhm.2020022, (2020).
22. From particles to firms: a kinetic model of climbing up evolutionary landscapes, N. Bellomo, G. Dosi, D. Knopoff, M. Virgillito, Mathematical Models and Methods in Applied Sciences, Vol. 30 No. 7, pp. 1441-1460, doi: 10.1142/S021820252050027X, (2020).
21. A compartmental model for antibiotic resistant bacterial infections over networks, D. Knopoff, F. Trucco, International Journal of Biomathematics, Vol. 13 No. 1, 2050001 (16 pages), (2020) doi: 10.1142/S1793524520500011, (2020).
20. On the Interaction between Soft and Hard Sciences: The Role of Mathematical Sciences. Looking Ahead to Research Perspectives, B. Aylaj, N. Bellomo, N. Chouhad, D. Knopoff, Vietnam Journal of Mathematics, in press, doi:10.1007/s10013-019-00381-3, (2020).
19. Credit risk contagion through non-performing loans on core-periphery networks, M. Dolfin, D. Knopoff, M. Limosani, M. Xibilia, Mathematics, Vol. 7 No. 713, doi:10.3390/math7080713, (2019).
18. Numerical simulation of a multiscale cell motility model based on the kinetic theory of active particles, D. Knopoff, J. Nieto, L. Urrutia, Symmetry, Vol. 11, No. 1003, doi:10.3390/sym11081003, (2019).
17. On an optimal control strategy in a kinetic social dynamics model, D. Knopoff, G. Torres, Communications in Applied and Industrial Mathematics, Vol. 9 No. 2, 22–33, doi: 10.2478/caim-2018-0014, (2018).
16. A kinetic model for horizontal transfer and bacterial antibiotic resistance, D. Knopoff, J.M. Sánchez Sansó, International Journal of Biomathematics, Vol. 10 No. 4, 1750051 (21 pages), doi: 10.1142/S1793524517500516, (2017).
15. Explaining coexistence of nitrogen fixing and non-fixing rhizobia in legume-rhizobia mutualism, G.Moyano, D. Marco, D. Knopoff, G. Torres, C. Turner, Mathematical Biosciences, Vol. 292, pp. 30–35, doi: 10.1016/j.mbs.2017.07.001, (2017).
14. Escaping the trap of “blocking”: a kinetic model linking economic development and political competition, M. Dolfin, D. Knopoff, L. Leonida, D. Maimone Ansaldo Patti, Kinetic and Related Models, Vol. 10 No. 2, pp. 423–443, doi: 10.3934/krm.2017016, (2017).
13. A parameter estimation problem for a tumor growth model, D. Knopoff, D. Fernández, G.A. Torres, C.V. Turner, Computational and Applied Mathematics, Vol. 36, No. 1, pp. 733–748, doi: 10.1007/s40314-015-0259-7, (2017).
12. Looking for fairer societies, can hard sciences help?: Comment on “Modeling human behavior in economics and social science” by M. Dolfin et al., D. Knopoff, Physics of Life Reviews, Vol. 22–23, pp. 37–38, (2017).
11. Further steps in the modeling of behavioural crowd dynamics, good news for safe handling: Comment on “Human behaviours in evacuation crowd dynamics: From modelling to “big data” toward crisis management” by Nicola Bellomo et al., D. Knopoff, Physics of Life Reviews, Vol. 18, pp. 35, doi: 10.1016/j.plrev.2016.07.012, (2016).
10. Learning dynamics: a fundamental building block in social models. Comment on “Collective learning modeling based on the kinetic theory of active particles” by Burini, de Lillo and Gibelli, D. Knopoff, Physics of Life Reviews, Vol. 16, pp. 148–149, doi: 10.1016/j.plrev.2015.12.004, (2016).
9. From systems theory of sociology to modeling the onset and evolution of criminality, N. Bellomo, F. Colasuonno, D. Knopoff, J. Soler, Networks and Heterogeneous Media, Vol. 10, No. 3, pp. 421–441, doi: 10.3934/nhm.2015.10.421, (2015).
8. A kinetic theory approach to the dynamics of crowd evacuation from bounded domains, J.P. Agnelli, F. Colasuonno, D. Knopoff, Mathematical Models and Methods in Applied Sciences, Vol. 25, No. 1, pp. 109-129, doi: 10.1142/S0218202515500049, (2015).
7. On a mathematical theory of complex systems on networks with application to opinion formation, D. Knopoff, Mathematical Models and Methods in Applied Sciences, Special Issue on Complex Systems, Vol. 24, No. 2, pp. 405–426, doi: 10.1142/S0218202513400137, (2014).
6. From the Micro-scale to Collective Crowd Dynamics, N. Bellomo, A. Bellouquid, D. Knopoff, Multiscale Modeling & and Simulation, Vol. 11, No. 3, pp. 943–963 (2013).
5. On the difficult interplay between life, “complexity”, and mathematical sciences, N. Bellomo, D. Knopoff, J. Soler, Mathematical Models and Methods in Applied Sciences, Vol. 23, No. 10, pp. 1861-1913 (2013).
4. Adjoint Method for a Tumour Growth PDE-Constrained Optimization Method, D. Knopoff, D. Fer nández, G.A. Torres, C.V. Turner, Computers and Mathematics with Applications, Vol. 66, No.06, pp.1104–1119 (2013).
3. From the modeling of the immune hallmarks of cancer to a black swan in biology, A. Bellouquid, E. De Angelis, D. Knopoff, Mathematical Models and Methods in Applied Sciences, Vol. 23, No. 05, pp.949–978 (2013).
2. On the modeling of migration phenomena on small networks, D. Knopoff, Mathematical Models and Methods in Applied Sciences, Vol. 23, No. 03, pp. 541-563 (2013).
1. Derivadas e integrales de órdenes arbitrarios. Una breve introducción al cálculo fraccionario, R. Cerutti, D. Knopoff, S. Noya, W. Ramos, Revista del Instituto de Matemática, Vol. 2, Año 2, (2006). ISSN: 1850-9827.