x := t -> t^2 - t;
y := t -> t^2 + t + 1;
a := plot([x(t), y(t), t = 0 .. 2]);
Option 1: polarplot(2);
Option 2: plot(2, theta = 0 .. 2*Pi, coords = polar);
implicitplot3d([x + y + z = 1], x = -10 .. 10, y = -20 .. 20, z = -10 .. 10, axes = boxed, style = surface);
implicitplot3d(x^2/4 + y^2/9 + z^2 = 1, x = -4 .. 4, y = -3 .. 3, z = -1 .. 1, numpoints = 1000, scaling = constrained, axes = boxed);
f := (x, y) -> x^2*y^3 - x^3*y^2 + 3*x + 2*y;
limit(f(x, y), {x = 1, y = 2});
f := x^3 + 6*x*y*z + y^3 + z^3 = 1;
implicitdiff(f, z, x);
implicitdiff(f, z, y);
cylindrical: int(r, [z = 0 .. sqrt(-r^2 + 16), r = 0 .. sqrt(7), theta = 0 .. 2*Pi]);
spherical: int(rho^2*sin(phi), [rho = 0 .. 4, phi = 0 .. 0.723, theta = 0 .. 2*Pi]) + int(rho^2*sin(phi), [rho = 0 .. sqrt(7)/sin(phi), phi = 0.723 .. Pi/2, theta = 0 .. 2*Pi]);