Search this site
Embedded Files
Skip to main content
Skip to navigation
CMPS290T- Spring 2019
Home
Lectures
Lecture 1
Lecture 2
Lecture 3
Lecture 4
Lecture 5
Lecture 6
Lecture 7
Lecture 8
Lecture 9
Lecture 10
Lecture 11
Lecture 12
Lecture 15
Lecture 16
Lecture 17
Lecture 18
Assignments
Assignment 1
Readings
Syllabus
Inquiries
CMPS290T- Spring 2019
Home
Lectures
Lecture 1
Lecture 2
Lecture 3
Lecture 4
Lecture 5
Lecture 6
Lecture 7
Lecture 8
Lecture 9
Lecture 10
Lecture 11
Lecture 12
Lecture 15
Lecture 16
Lecture 17
Lecture 18
Assignments
Assignment 1
Readings
Syllabus
Inquiries
More
Home
Lectures
Lecture 1
Lecture 2
Lecture 3
Lecture 4
Lecture 5
Lecture 6
Lecture 7
Lecture 8
Lecture 9
Lecture 10
Lecture 11
Lecture 12
Lecture 15
Lecture 16
Lecture 17
Lecture 18
Assignments
Assignment 1
Readings
Syllabus
Inquiries
Lecture 16
May 23, 2019
Overview
ML pipeline review
Training and optimization review
Model update process
Model availability after training
Deployment Methods
Serving as inference
Updating model and parameters
Mixed models
Method comparison
Lecture Slides
CMPS290T_S19_L16
Lecture Video
Resources
Slides [
Link
]
Report abuse
Report abuse