Belgiu, M., & Drăguţ, L. (2016). Random forest in remote sensing: A review of applications and future directions. ISPRS Journal of Photogrammetry and Remote Sensing, 114, 24–31. https://doi.org/10.1016/j.isprsjprs.2016.01.011
Harris, J. A., Hobbs, R. J., Higgs, E., & Aronson, J. (2006). Ecological restoration and global climate change. Restoration Ecology, 14(2), 170–176. https://doi.org/10.1111/j.1526-100X.2006.00112.x
Hengl, T., Walsh, M. G., Sanderman, J., Wheeler, I., Harrison, S. P., & Prentice, I. C. (2018). Global mapping of potential natural vegetation: An assessment of machine learning algorithms for estimating land potential. PeerJ, 6, e5457. https://doi.org/10.7717/peerj.5457
Hobbs, R. J., Higgs, E., & Hall, C. M. (2013). Novel ecosystems: Intervening in the new ecological world order. Wiley-Blackwell.
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. https://doi.org/10.1038/nature14539
Millar, C. I., Stephenson, N. L., & Stephens, S. L. (2007). Climate change and forests of the future: Managing in the face of uncertainty. Ecological Applications, 17(8), 2145–2151. https://doi.org/10.1890/06-1715.1
Seddon, N., Mace, G. M., Naeem, S., Tobias, J. A., Pigot, A. L., Cavanagh, R., ... & Turner, B. (2016). Biodiversity in the Anthropocene: Prospects and policy. Proceedings of the Royal Society B, 283(1844), 20162094. https://doi.org/10.1098/rspb.2016.2094
Strassburg, B. B. N., Iribarrem, A., Beyer, H. L., et al. (2020). Global priority areas for ecosystem restoration. Nature, 586(7831), 724–729. https://doi.org/10.1038/s41586-020-2784-9
Wang, T. L., Hamann, A., Spittlehouse, D., & Carroll, C. (2016). Locally Downscaled and Spatially Customizable Climate Data for Historical and Future Periods for North America. Plos One, 11(6). doi: ARTN e015672010.1371/journal.pone.0156720