References

Agriculture and Agri-food Canada. (2023, February 23). Canadian Drought Monitor. Retrieved from Open Canada: https://agriculture.canada.ca/atlas/data_donnees/canadianDroughtMonitor/data_donnees/fgdb/

Allen, C. D., Macalady, A. K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., . . . Cobb, N. (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259(4), 660-684. doi:10.1016/j.foreco.2009.09.001

Babst, F., Bouriaud, O., Poulter, B., Trouet, V., Girardin, M. P., & Frank, D. C. (2019). Twentieth century redistribution in climatic drivers of global tree growth. Science Advances, 5(1), eaat4313. doi:10.1126/sciadv.aat4313

Beaudoin, A., Bernier, P. Y., Guindon, L., Villemaire, P., Guo, X. J., Stinson, G., . . . Hall, R. J. (2014). Mapping attributes of Canada’s forests at moderate resolution through kNN and MODIS imagery. Canadian Journal of Forest Research, 44(5), 521-532. doi:10.1139/cjfr-2013-0401

Delpierre, N., Vitasse, Y., Chuine, I., Guillemot, J., Bazot, S., Rutishauser, T., & Rathgeber, C. B. (2016). Temperate and boreal forest tree phenology: From organ-scale processes to terrestrial ecosystem models. Annals of Forest Science, 73(1), 5-25. doi:10.1007/s13595-015-0477-6

DeSoto, L., Cailleret, M., Sterck, F., Jansen, S., Kramer, K., Robert, E. M., . . . Martínez-Vilalta, J. (2020). Low growth resilience to drought is related to future mortality risk in trees. Nature Communications, 11, 545. doi:10.1038/s41467-020-14300-5

Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29(5), 1189-1232. doi:10.1214/aos/1013203451

Gamfeldt, L., Snäll, T., Bagchi, R., Jonsson, M., Gustafsson, L., Kjellander, P., . . . Bengtsson, J. (2013). Higher levels of multiple ecosystem services are found in forests with more tree species. Nature Communications, 4. doi:10.1038/ncomms2328

Gao, S., Liu, R., Zhou, T., Fang, W., Yi, C., Lu, R., & Luo, H. (2018). Dynamic responses of tree-ring growth to multiple dimensions of drought. Global Change Biology, 24(11), 5380-5390. doi:10.1111/gcb.14367

Gruber, A., Scanlon, T., van der Schalie, R., Wagner, W., & Dorigo, W. (2019). Evolution of the ESA CCI Soil Moisture Climate Data Records and their underlying merging methodology. Earth System Science Data, 11, 717-739. doi:10.5194/essd-11-717-2019

Hogg, E. H., Barr, A. G., & Black, T. A. (2013). A simple soil moisture index for representing multi-year drought impacts on aspen productivity in the western Canadian interior. Agricultural and Forest Meteorology, 178-179, 173-182. doi:10.1016/j.agrformet.2013.04.025

Hynes, A., & Hamann, A. (2020). Moisture deficits limit growth of white spruce in the west-central boreal. Forest Ecology and Management, 461, 117944. doi:10.1016/j.foreco.2020.117944

Lindner, M., Maroschek, M., Netherer, S., Kremer, A., Barbati, A., Garcia-Gonzalo, J., . . . Marchetti, M. (2010). Climate change impacts, adaptive capacity , and vulnerability of European forest ecosystems. Forest Ecology and Management, 259(4), 698-709. doi:10.1016/j.foreco.2009.09.023

Liaw, A. & Wiener, M. (2002). Classification and Regression by randomForest. R News 2(3), 18-22

Liu, L., Gudmundsson, L., Hauser, M., Qin, D., Li, S., & Seneviratne, S. I. (2020). Soil moisture dominates dryness stress on ecosystem production globally. Nature Communications, 11(1). doi:10.1038/s41467-020-18631-1

Lloret, F., Keeling, E. G., & Sala, A. (2011). Components of tree resilience: effects of successive low-growth. Oikos, 120(12), 1909-1920. doi:10.1111/j.1600-0706.2011.19372.x

Manvailer, V. & Hamann, A. (2022). A snapshot of the international tree ring database (ITRDB) with improved metadata and error corrections. [Unpublished manuscript].

Martínez-Vilalta, J., López, B. C., Loepfe, L., & Lloret, F. (2012). Stand- and tree-level determinants of the drought response of scots pine radial growth. Oecologia, 168(3), 877-888. doi:10.1007/s00442-011-2132-8

McDowell, N., Pockman, W. T., Allen, C. D., Breshears, D. D., Cobb, N., Kolb, T., . . . Yepez, E. A. (2008). Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? New Phytologist, 178(4), 719-739. doi:10.1111/j.1469-8137.2008.02436.x

Peng, C., Ma, Z., Lei, X., Zhu, Q., Chen, H., Wang, W., . . . Zhou, X. (2011). A drought-induced pervasive increase in tree mortality across canada's boreal forests. Nature Climate Change, 1(9), 467-471. doi:10.1038/nclimate1293

Pereira, A. R., & Paes De Camargo, Â. (1989). An analysis of the criticism of thornthwaite's equation for estimating potential evapotranspiration. Agricultural and Forest  Meteorology, 46(1-2), 149-157. doi:10.1016/0168-1923(89)90118-4

Serrano, L., & Peñuelas, J. (2005). Serrano, L., & Peñuelas, J. (2005). Contribution of physiological and morphological adjustments to drought resistance in two mediterranean tree species. Biologia Plantarum, 49(4), 551-559. doi:10.1007/s10535-005-0049-y

Statistics Canada. (2016, November 22). Provinces/Territories, Cartographic Boundary File - 2016 Census. Retrieved from Open Canada: https://www12.statcan.gc.ca/census-recensement/2011/geo/bound-limit/files-fichiers/2016/lpr_000b16a_f.zip

Wang, T., Hamann, A., Spittlehouse, D., & Carroll, C. (2016). (2016). Locally Downscaled and Spatially Customizable Climate Data for Historical and Future Periods for North America. PLoS ONE, 11(6), e0156720. doi:10.1371/journal.pone.0156720

Wang, T., Hamann, A., Spittlehouse, D., & Carroll, C. (2022, May 8). ClimateNA. (Version 7.30) [Software].