References

Agriculture and Agri-Food Canada. (2021, July 27). Terrestrial Ecozones of Canada [Data file].

Chaves, M. M., Pereira, J. S., Maroco, J., Rodrigues, M. L., Ricardo, C. P., Osório, M. L., . . . Pinheiro, C. (2002). How plants cope with water stress in the field. Photosynthesis and growth. Annals of Botany, 89, 907-916. doi:10.1093/aob/mcf105

DeSoto, L., Cailleret, M., Sterck, F. J., S., K. K., Robert, E. M., & Martínez-Vilalta, J. (2020). Low growth resilience to drought is related to future mortality risk in trees. Nature Communications, 11(1). doi:10.1038/s41467-020-14300-5

Esri Inc. (2022). ArcGIS Pro (Version 3.0.0) [Software].

Gao, S., Liu, R., Zhou, T., Fang, W. Y., C., L. R., & Luo, H. (2018). Dynamic responses of tree-ring growth to multiple dimensions of drought. Global Change Biology, 24(11), 5380-5390. doi:doi:10.1111/gcb.14367

Hacke, U. G., Sperry, J. S., Wheeler, J. K., & Castro, L. (2006). Scaling of angiosperm xylem structure with safety and efficiency. Tree Physiology, 26(6), 689-701. doi:10.1093/treephys/26.6.689

Hogg, E. H., Barr, A. G., & Black, T. A. (2013). A simple soil moisture index for representing multi-year drought impacts on aspen productivity in the western Canadian interior. Agricultural and Forest Meteorology, 178-179, 173-182. doi:10.1016/j.agrformet.2013.04.025

Hynes, A., & Hamman, A. (2020). Moisture deficits limit growth of white spruce in the west-central boreal. Forest Ecology and Managemetn, 461, 117944. doi:10.1016/j.foreco.2020.117944

LeBauer, D. S., & Treseder, K. K. (2008). Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology, 89(2), 371-379. doi:10.1890/06-2057.1

Lloret, F., Keeling, E. G., & Sala, A. (2011). Components of tree resilience: effects of successive low-growth. Oikos, 120(12), 1909-1920. doi:10.1111/j.1600-0706.2011.19372.x

Majorowicz, J. A., & Skinner, W. R. (1997). Potential causes of differences between ground and surface air temperature warming across different ecozones in Alberta, Canada. Global and Planetary Change, 15(3-4), 79-91. doi:10.1016/S0921-8181(97)00005-2

Manvailer, V., & Hamann, A. (2022). A snapshot of the international tree ring database (ITRDB) with improved metadata and error corrections. [Unpublished manuscript].

Martínez-Fernández, J. A.-M., de Luis, M., González-Zamora, A., & Herrero-Jiménez, C. (2019). Tracking tree growth through satellite soil moisture monitoring: A case study of pinus halepensis in spain. Remote Sensing of Environment. doi:10.1016/j.rse.2019.111422

Matsushita, M., Takata, K., Hitsuma, G., Yagihashi, T., Noguchi, M., Shibata, M., & Masaki, T. (2015). A novel growth model evaluating age-size effect on long-term trends in tree growth. Functional Ecology, 29(10), 1250-1259. doi:10.1111/1365-2435.12416

Nadal-Sala, D., Grote, R. B., B., K. T., Rehschuh, R., Schwarz, S., & Ruehr, N. K. (2021). Leaf shedding and non-stomatal limitations of photosynthesis mitigate hydraulic conductance losses in scots pine saplings during severe drought stress. Frontiers in Plant Science, 12. doi:10.3389/fpls.2021.715127

Oboite, F. O., & Comeau, P. G. (2020). The interactive effect of competition and climate on growth of boreal tree species in western Canada and Alaska. Canadian Journal of Forest Research, 50(5), 457-464. doi:10.1139/cjfr-2019-0319

Pereira, A. R., & Paes De Camargo, Â. (1989). An analysis of the criticism of thornthwaite's equation for estimating potential evapotranspiration. Agricultural and Forest Meteorology, 46(1-2), 149-157. doi:10.1016/0168-1923(89)90118-4

Pfautsch, S., Hölttä, T., & Mencuccini, M. (2015). Hydraulic functioning of tree stems - fusing ray anatomy, radial transfer and capacitance. Tree Physiology, 35(7), 706-722. doi:10.1093/treephys/tpv058

Porter, L. (1999). Growth responses of 15 rain-forest tree species to a light gradient: The relative importance of morphological and physiological traits. Functional Ecology, 13(3), 396-410. doi:10.1046/j.1365-2435.1999.00332.x

Roosen, C. B., & Hastie, T. J. (1994). Automatic smoothing spline projection pursuit. Journal of Computational and Graphical Statistics, 3(3), 235-248. doi:10.1080/10618600.1994.10474642

Serrano, L., & Peñuelas, J. (2005). Contribution of physiological and morphological adjustments to drought resistance in two mediterranean tree species. Biologia Plantarum, 49(4), 551-559. doi:10.1007/s10535-005-0049-y

Venturas, M. D., Sperry, J. S., & Hacke, U. G. (2017). Plant xylem hydraulics: What we understand, current research, and future challenges. Journal of Integrative Plant Biology, 59(6), 356-389. doi:10.1111/jipb.12534

Wahid, A., Gelani, S., Ashraf, M., & Foolad, M. R. (2007). Heat tolerance in plants: An overview. Environmental and Experimental Botany, 61(3), 199-223. doi:10.1016/j.envexpbot.2007.05.011

Wang, T., Hamann, A., Spittlehouse, D., & Carroll, C. (2016). Locally Downscaled and Spatially Customizable Climate Data for Historical and Future Periods for North America. PLoS ONE, 11(6), e0156720. doi:10.1371/journal.pone.0156720

Wang, T., Hamann, A., Spittlehouse, D., & Carroll, C. (2022, May 8). ClimateNA. (Version 7.30) [Software].