References

References

  1. Aaltonen, H., Lindén, A., Heinonsalo, J., Biasi, C., and Pumpanen, J. (2016). Effects of prolonged drought stress on Scots pine seedling carbon allocation. Tree Physiology 37, 418-427.DOI: 10.1093/treephys/tpw119.

  2. Bahadur, A., Batool, A., Nasir, F., Jiang, S., Mingsen, Q., Zhang, Q., Pan, J., Liu, Y., and Feng, H. (2019). Mechanistic Insights into Arbuscular Mycorrhizal Fungi-Mediated Drought Stress Tolerance in Plants. International Journal of Molecular Sciences 20, 4199.

  3. Benaffari, W., Boutasknit, A., Anli, M., Ait-El-Mokhtar, M., Ait-Rahou, Y., Ben-Laouane, R., Ben Ahmed, H., Mitsui, T., Baslam, M., and Meddich, A. (2022). The Native Arbuscular Mycorrhizal Fungi and Vermicompost-Based Organic Amendments Enhance Soil Fertility, Growth Performance, and the Drought Stress Tolerance of Quinoa. Plants 11, 393.

  4. Brunner, I., Herzog, C., Dawes, M.A., Arend, M., and Sperisen, C. (2015). How tree roots respond to drought. Frontiers in plant science 6, 547.

  5. Calvo-Polanco, M., Armada, E., Zamarreño, A.M., García-Mina, J.M., and Aroca, R. (2019). Local root ABA/cytokinin status and aquaporins regulate poplar responses to mild drought stress independently of the ectomycorrhizal fungus Laccaria bicolor. Journal of Experimental Botany 70, 6437-6446.DOI: 10.1093/jxb/erz389.

  6. Chen, X., Ding, Y., Yang, Y., Song, C., Wang, B., Yang, S., Guo, Y., and Gong, Z. (2021). Protein kinases in plant responses to drought, salt, and cold stress. J Integr Plant Biol 63, 53-78.DOI: 10.1111/jipb.13061.

  7. Coince, A., Caël, O., Bach, C., Lengellé, J., Cruaud, C., Gavory, F., Morin, E., Murat, C., Marçais, B., and Buée, M. (2013). Below-ground fine-scale distribution and soil versus fine root detection of fungal and soil oomycete communities in a French beech forest. Fungal Ecology 6, 223-235.DOI: https://doi.org/10.1016/j.funeco.2013.01.002.

  8. Dunabeitia, M., Rodrı́Guez, N., Salcedo, I., and Sarrionandia, E. (2004). Field mycorrhization and its influence on the establishment and development of the seedlings in a broadleaf plantation in the Basque Country. Forest Ecology and Management 195, 129-139.

  9. Fernandez, C.W. (2021). The advancing mycelial frontier of ectomycorrhizal fungi. New Phytologist 230, 1296-1299.DOI: https://doi.org/10.1111/nph.17281.

  10. Fransson, P.M., Taylor, A.F., and Finlay, R.D. (2000). Effects of continuous optimal fertilization on belowground ectomycorrhizal community structure in a Norway spruce forest. Tree Physiology 20, 599-606.

  11. Grundmann, G., and Debouzie, D. (2000). Geostatistical analysis of the distribution of NH4+ and NO2−-oxidizing bacteria and serotypes at the millimeter scale along a soil transect. FEMS Microbiology Ecology 34, 57-62.

  12. Haan, C., and Barfield, B. (1971). Controlling the soil moisture environment of transpiring plants. Plant and Soil 35, 439-443.

  13. Horton, T.R., and Bruns, T.D. (2001). The molecular revolution in ectomycorrhizal ecology: peeking into the black‐box. Molecular ecology 10, 1855-1871.

  14. Jackson, R., and Caldwell, M. (1993). Geostatistical patterns of soil heterogeneity around individual perennial plants. Journal of Ecology, 683-692.

  15. Kipfer, T., Wohlgemuth, T., Van Der Heijden, M.G.A., Ghazoul, J., and Egli, S. (2012). Growth Response of Drought-Stressed Pinus sylvestris Seedlings to Single- and Multi-Species Inoculation with Ectomycorrhizal Fungi. PLOS ONE 7, e35275.DOI: 10.1371/journal.pone.0035275.

  16. Li, M., Wang, H., Zhao, X., Lu, Z., Sun, X., and Ding, G. (2021). Role of Suillus placidus in Improving the Drought Tolerance of Masson Pine (Pinus massoniana Lamb.) Seedlings. Forests 12, 332.

  17. Marchin, R.M., Ossola, A., Leishman, M.R., and Ellsworth, D.S. (2020). A Simple Method for Simulating Drought Effects on Plants. Frontiers in Plant Science 10.DOI: 10.3389/fpls.2019.01715.

  18. Martignago, D., Rico-Medina, A., Blasco-Escámez, D., Fontanet-Manzaneque, J.B., and Caño-Delgado, A.I. (2020). Drought resistance by engineering plant tissue-specific responses. Frontiers in plant science 10, 1676.

  19. Mexal, J., Fisher, J.T., Osteryoung, J., and Reid, C.P. (1975). Oxygen availability in polyethylene glycol solutions and its implications in plant-water relations. Plant Physiology 55, 20-24.

  20. Mudge, K.W., Diebolt, K.S., and Whitlow, T.H. (1987). Ectomycorrhizal Effect on Host Plant Response to Drought Stress. Journal of Environmental Horticulture 5, 183-187.DOI: 10.24266/0738-2898-5.4.183.

  21. Natel, P., and Neumann, P. (1992). Ecology of ectomycorrhizal‐basidiomycete communities on a local vegetation gradient. Ecology 73, 99-117.

  22. Okamoto, M., Peterson, F.C., Defries, A., Park, S.-Y., Endo, A., Nambara, E., Volkman, B.F., and Cutler, S.R. (2013). Activation of dimeric ABA receptors elicits guard cell closure, ABA-regulated gene expression, and drought tolerance. Proceedings of the National Academy of Sciences 110, 12132-12137.DOI: doi:10.1073/pnas.1305919110.

  23. Onyekachi, O.G., Boniface, O.O., Gemlack, N.F., and Nicholas, N. (2019). The effect of climate change on abiotic plant stress: a review. Abiotic and biotic stress in plants 17.

  24. Pereira, A. (2016). Plant abiotic stress challenges from the changing environment. Frontiers in plant science 7, 1123.

  25. Poorter, H., Fiorani, F., Stitt, M., Schurr, U., Finck, A., Gibon, Y., Usadel, B., Munns, R., Atkin, O.K., and Tardieu, F. (2012). The art of growing plants for experimental purposes: a practical guide for the plant biologist. Functional Plant Biology 39, 821-838.

  26. Ramanjulu, S., and Bartels, D. (2002). Drought‐and desiccation‐induced modulation of gene expression in plants. Plant, cell & environment 25, 141-151.

  27. Repáč, I. (2011). "Ectomycorrhizal Inoculum and Inoculation Techniques," in Diversity and Biotechnology of Ectomycorrhizae, eds. M. Rai & A. Varma. (Berlin, Heidelberg: Springer Berlin Heidelberg), 43-63.DOI: 10.1007/978-3-642-15196-5_3.

  28. Rudawska, M., and Leski, T. (2021). Ectomycorrhizal Fungal Assemblages of Nursery-Grown Scots Pine are Influenced by Age of the Seedlings. Forests 12, 134.

  29. Shah, A., and Smith, D.L. (2020). Flavonoids in Agriculture: Chemistry and Roles in, Biotic and Abiotic Stress Responses, and Microbial Associations. Agronomy 10, 1209.

  30. Shinozaki, K., Yamaguchi-Shinozaki, K., and Seki, M. (2003). Regulatory network of gene expression in the drought and cold stress responses. Current Opinion in Plant Biology 6, 410-417.DOI: https://doi.org/10.1016/S1369-5266(03)00092-X

  31. Takahashi, F., Kuromori, T., Sato, H., and Shinozaki, K. (2018). Regulatory Gene Networks in Drought Stress Responses and Resistance in Plants. Adv Exp Med Biol 1081, 189-214.DOI: 10.1007/978-981-13-1244-1_11.

  32. Taylor, A.F.S. (2002). Fungal diversity in ectomycorrhizal communities: sampling effort and species detection. Plant and Soil 244, 19-28.

  33. Van Der Heijden, M.G.A., Martin, F.M., Selosse, M.-A., and Sanders, I.R. (2015). Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytologist 205, 1406-1423.DOI: https://doi.org/10.1111/nph.13288.

  34. Wang, J., Zhang, H., Gao, J., Zhang, Y., Liu, Y., and Tang, M. (2021). Effects of ectomycorrhizal fungi (Suillus variegatus) on the growth, hydraulic function, and non-structural carbohydrates of Pinus tabulaeformis under drought stress. BMC Plant Biology 21, 171.DOI: 10.1186/s12870-021-02945-3.

  35. Weigandt, M., Villacide, J., Bianchi, E., and Varela, S. (2022). Growth response of Pinus contorta to the synergy of stress factors: successive extreme drought events and a population outbreak of Sirex noctilio in NW Patagonia. New Forests.DOI: 10.1007/s11056-022-09907-z.

  36. Xie, W., Hao, Z., Zhou, X., Jiang, X., Xu, L., Wu, S., Zhao, A., Zhang, X., and Chen, B. (2018). Arbuscular mycorrhiza facilitates the accumulation of glycyrrhizin and liquiritin in Glycyrrhiza uralensis under drought stress. Mycorrhiza 28, 285-300.DOI: 10.1007/s00572-018-0827-y.

  37. Yeo, A.R., and Flowers, T.J. (1984). Nonosmotic effects of polyethylene glycols upon sodium transport and sodium-potassium selectivity by rice roots. Plant Physiology 75, 298-303.

  38. Yin, D., Song, R., Qi, J., and Deng, X. (2018). Ectomycorrhizal fungus enhances drought tolerance of Pinus sylvestris var. mongolica seedlings and improves soil condition. Journal of Forestry Research 29, 1775-1788.DOI: 10.1007/s11676-017-0583-4.

  39. Yin, D., Wang, H., and Qi, J. (2021). The Enhancement Effect of Calcium Ions on Ectomycorrhizal Fungi-Mediated Drought Resistance in Pinus sylvestris var. mongolica. Journal of Plant Growth Regulation 40, 1389-1399.DOI: 10.1007/s00344-020-10197-y.

  40. Yooyongwech, S., Phaukinsang, N., Cha-Um, S., and Supaibulwatana, K. (2013). Arbuscular mycorrhiza improved growth performance in Macadamia tetraphylla L. grown under water deficit stress involves soluble sugar and proline accumulation. Plant Growth Regulation 69, 285-293.DOI: 10.1007/s10725-012-9771-6.

  41. Zandalinas, S.I., Mittler, R., Balfagón, D., Arbona, V., and Gómez-Cadenas, A. (2018). Plant adaptations to the combination of drought and high temperatures. Physiol Plant 162, 2-12.DOI: 10.1111/ppl.12540.

  42. Zhu, J.K. (2002). Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53, 247-273.DOI: 10.1146/annurev.arplant.53.091401.143329.

  43. Zou, Y.N., Wu, Q.S., and Kuča, K. (2021). Unravelling the role of arbuscular mycorrhizal fungi in mitigating the oxidative burst of plants under drought stress. Plant Biol (Stuttg) 23 Suppl 1, 50-57.DOI: 10.1111/plb.13161.