Resources

Algorithms 

LandTrendr

CCDC-SMA

Collect Earth Online is an open-source, satellite image viewing and interpretation system developed by SERVIR - a joint NASA and USAID program in partnership with regional technical organizations around the world. This tool is ideal for use in projects that require land cover and/or land use reference data. Collect Earth Online promotes consistency in locating, interpreting, and labeling reference data plots for use in classifying and monitoring land cover / land use change. 

Manual (English) 

Go to the Book: https://www.eefabook.org/go-to-the-book.html

Videos: https://www.eefabook.org/videos.html

Relevant chapters to this workshop: 

F4.4 Change Detection 

F4.5 Interpreting Annual Time Series with LandTrendr 

F4.7 Interpreting Time Series with CCDC 

A3.3 Mangroves II - Change Mapping

A3.4 Forest Degradation and Deforestation

A3.5 Deforestation Viewed from Multiple Sensors

LandTrendr - related papers:

Cohen, W. B., Yang, Z., & Kennedy, R. (2010). Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync-Tools for calibration and validation. Remote Sensing of Environment, 114(12), 2911-2924.

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18-27.

Kennedy, R. E., Yang, Z., & Cohen, W. B. (2010). Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr—Temporal segmentation algorithms. Remote Sensing of Environment, 114(12), 2897-2910.

Kennedy, R. E., Yang, Z., Cohen, W. B., Pfaff, E., Braaten, J., & Nelson, P. (2012). Spatial and temporal patterns of forest disturbance and regrowth within the area of the Northwest Forest Plan. Remote Sensing of Environment, 122, 117-133.

Kennedy, R.E., Yang, Z., Gorelick, N., Braaten, J., Cavalcante, L., Cohen, W.B., Healey, S. (2018). Implementation of the LandTrendr Algorithm on Google Earth Engine. Remote Sensing. 10, 691.

Roy, D. P., Kovalskyy, V., Zhang, H. K., Vermote, E. F., Yan, L., Kumar, S. S., & Egorov, A. (2016). Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity. Remote Sensing of Environment, 185, 57-70.

LandTrendr vs. CCDC

Pasquarella, V., Arévalo, P., Bratley, K.H., Bullock, E.L. Gorelick, N., Zhiqiang, Y. & Kennedy, R.E. (2022). Demystifying LandTrendr and CCDC temporal segmentation, International Journal of Applied Earth Observation and Geoinformation, 102806,1569-8432.

CCDC-related papers (theory + applications)

Zhu, Z. & Woodcock, C.E. (2014). Continuous change detection and classification of land cover using all available Landsat data. Remote Sensing of Environment, 144, 152-171.

Arévalo, P., Bullock, E.L., Woodcock, C.E. & Olofsson, P. (2020). A Suite of Tools for Continuous Land Change Monitoring in Google Earth Engine. Frontiers in Climate, 2:576740.

Chen, S., Woodcock, C.E., Bullock, E.L., Arévalo, P., Torchinava, P., Peng, S. & Olofsson, P. (2021). Monitoring temperate forest degradation on Google Earth Engine using Landsat time series analysis. Remote Sensing of Environment, 265, 112648.

Chen, S., Olofsson, P., Sapangthong, T., &  Woodcock, C.E. (2023). Monitoring shifting cultivation in Laos with Landsat time series. Remote Sensing of Environment, 288, 113507.

Arévalo, P., Woodcock, C.E. & Olofsson, P. (2020). Continuous monitoring of land change activities and post-disturbance dynamics from Landsat time series: A test methodology for REDD+ reporting. Remote Sensing of Environment, 238, 111051.

Tang, X., Hutyra, L. R., Arévalo, P., Baccini, A., Woodcock, C.E. & Olofsson, P. (2020). Spatiotemporal tracking of carbon emissions and uptake using time series analysis of Landsat data: A spatially explicit carbon bookkeeping model. Science of The Total Environment. 720, 137409. 

Zhang, Y., Woodcock, C.E., Chen, S., Wang, J.A., Sulla-Menashe, D., Zuo, Z., Olofsson, P., Wang, Y. & Friedl, M.A. (2022). Mapping causal agents of disturbance in boreal and arctic ecosystems of North America using time series of Landsat data. Remote Sensing of Environment, 272,112935.


Carbon Emissions: 

Guatemala's REDD+ FREL Report

https://redd.unfccc.int/files/niveles_referencia_emisiones_forestales_guatemala_070222.pdf

Emission Estimation Guidelines

2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories - https://www.ipcc-nggip.iges.or.jp/public/2019rf/index.html


REDD+ Sourcebook (COP 22 version 1) - http://www.gofcgold.wur.nl/redd/sourcebook/GOFC-GOLD_Sourcebook.pdf


Integration of remote-sensing and ground-based observations for estimation of emissions and removals of greenhouse gases in forests -https://www.reddcompass.org/documents/184/0/GFOI-MGD-3.0-en.pdf


Aboveground Woody Biomass Product Validation - Good Practices Protocol (Version 1.0) - https://lpvs.gsfc.nasa.gov/PDF/CEOS_WGCV_LPV_Biomass_Protocol_2021_V1.0.pdf

Biomass

Arévalo, P., Baccini, A., Woodcock, C.E., Olofsson, P. & Walker, W. S. (2023). Continuous mapping of aboveground biomass using Landsat time series. Remote Sensing of Environment, 288, 113483.

Saatchi SS, Harris NL, Brown S et al. (2011). Benchmark map of forest carbon stocks in tropical regions across three continents. Proceedings of the National Academy of Sciences, 108, 9899–9904. 

Baccini A, Goetz SJ, Walker WS et al. (2012). Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nature Climate Change, 2, 182–185 

Avitabile V, Herold M, Heuvelink G, Lewis SL, Phillips OL, Asner GP et al. (2016). An integrated pan-tropical biomass maps using multiple reference datasets. Global Change Biology, 22: 1406–1420. doi:10.1111/gcb.13139. 

Liang, M., Duncanson, L., Silva, J. A., & Sedano, F. (2023). Quantifying aboveground biomass dynamics from charcoal degradation in Mozambique using GEDI Lidar and Landsat. Remote Sensing of Environment, 284, 113367.