持続可能な社会・経済研究会セミナーシリーズ
What's Research Workshop on Sustainable Society at Musashi University?
現在、経済学、政治科学など、社会科学全般で様々な分野で持続可能な社会に関して政策提言が行われていますが、それぞれの提案されている施策の相互作用や関係性を十分に理解する統合的な研究活動はいまだに不十分と言わざるを得ません。真の持続可能な社会実現のためにも、国際的な研究活動をもととした多角的な分析視野と、学際的な研究知見を併せ持つ、より俯瞰的な研究が社会的に要請されていると言えます。そのため持続可能性を担保する社会・経済実現のため、学術領域を越えた議論を創発するとともに、国際的な研究協力の加速化を目的として、武蔵大学における研究会として、本研究会は設立されました。
Currently, policy recommendations regarding a sustainable society are being made in various fields within social sciences such as economics and political science. However, it must be said that integrated research activities, which fully understand the interactions and relationships between the proposed measures, are still insufficient. For the realization of a truly sustainable society, a more comprehensive research approach is socially demanded, which combines multidimensional analysis based on international research activities with interdisciplinary research findings. Therefore, this research group was established at Musashi University with the aim of fostering cross-disciplinary discussions to ensure sustainability in society and the economy, as well as to accelerate international research cooperation.
セミナー幹事:神林龍、田中健太、広田啓朗、釣雅雄、笠松怜史、佐藤宇樹、原朋弘、阿部景太
Workshop organizers: Ryo Kambayashi, Kenta Tanaka, Haruaki Hirota, Masao Tsuri, Satoshi Kasamatsu, Takaki Sato, Tomohiro Hara, Keita Abe
発表言語 (Language):日本語/English (スピーカーが選択/Speaker's choice)
澤田 真行 (一橋大学 経済研究所)
Masayuki Sawada (Hitotsubashi University IER)
日時 date:2025年12月11日(木 Thu) Google Calendar
時間 time:16:30-18:00
タイトル title:A unified test for regression discontinuity designs
発表言語 language:TBA
会場 venue:教授研究棟 03-G会議室 Room 03-G in Research Building
概要 abstract :Diagnostic tests for regression discontinuity design face a size-control problem. We document a massive over-rejection of the diagnostic restriction among empirical studies in the top five economics journals. At least one diagnostic test was rejected for 19 out of 59 studies, whereas less than 5% of the collected 787 tests rejected the null hypotheses. In other words, one-third of the studies rejected at least one of their diagnostic tests, whereas their underlying identifying restrictions appear plausible. Multiple testing causes this problem because the median number of tests per study was as high as 12. The critical issue is the lack of a formal method to dismiss possibly false rejections caused by the multiple testing problem. Therefore, we offer unified tests to overcome the size-control problem. Our procedure is based on the new joint asymptotic normality of local polynomial mean and density estimates. In simulation studies, our unified tests outperformed the Bonferroni correction. We implement the procedure as an R package rdtest with two empirical examples in its vignettes.