持続可能な社会・経済研究会セミナーシリーズ
What's Research Workshop on Sustainable Society at Musashi University?
現在、経済学、政治科学など、社会科学全般で様々な分野で持続可能な社会に関して政策提言が行われていますが、それぞれの提案されている施策の相互作用や関係性を十分に理解する統合的な研究活動はいまだに不十分と言わざるを得ません。真の持続可能な社会実現のためにも、国際的な研究活動をもととした多角的な分析視野と、学際的な研究知見を併せ持つ、より俯瞰的な研究が社会的に要請されていると言えます。そのため持続可能性を担保する社会・経済実現のため、学術領域を越えた議論を創発するとともに、国際的な研究協力の加速化を目的として、武蔵大学における研究会として、本研究会は設立されました。
Currently, policy recommendations regarding a sustainable society are being made in various fields within social sciences such as economics and political science. However, it must be said that integrated research activities, which fully understand the interactions and relationships between the proposed measures, are still insufficient. For the realization of a truly sustainable society, a more comprehensive research approach is socially demanded, which combines multidimensional analysis based on international research activities with interdisciplinary research findings. Therefore, this research group was established at Musashi University with the aim of fostering cross-disciplinary discussions to ensure sustainability in society and the economy, as well as to accelerate international research cooperation.
セミナー幹事:神林龍、田中健太、広田啓朗、釣雅雄、笠松怜史、佐藤宇樹、原朋弘、阿部景太
Workshop organizers: Ryo Kambayashi, Kenta Tanaka, Haruaki Hirota, Masao Tsuri, Satoshi Kasamatsu, Takaki Sato, Tomohiro Hara, Keita Abe
発表言語 (Language):日本語/English (スピーカーが選択/Speaker's choice)
佐藤広人 (名古屋大学)
Hiroto Sato (Nagoya University)
日時 date:2026年2月16日(月 Mon) Google Calendar
時間 time:16:30-18:00
タイトル title:Managing Learning Structures
発表言語 language:JP
会場 venue:教授研究棟 03-G会議室 Room 03-G in Research Building
概要 abstract :We develop a simple model of a designer who manages a learning structure. Agents have partial private information about a common-value good. The designer wishes to allocate the good to as many agents as possible without using monetary transfers. We formulate this environment as a mechanism design problem that nests social learning models and characterize an optimal mechanism under general distributions over private information. The optimal mechanism can be summarized by two parameters: one purely adjusts the allocation probability, while the other governs the amount of learning implicitly induced by allocation. Although the designer always prefers to allocate the good, managing incentives for learning leads the optimal mechanism to withhold allocation even when allocation is socially efficient. Our analysis brings the perspective of managing learning structures to market design and introduces a mechanism design approach to social learning.
野口 真平 (一橋大学)
Shinpei Noguchi (Hitotsubashi University)
日時 date:2026年2月24日(火 Tue) Google Calendar
時間 time:16:30-18:00
タイトル title:Robustly Optimal Voting Rule
発表言語 language:JP
会場 venue:教授研究棟 03-G会議室 Room 03-G in Research Building
概要 abstract :We examine optimal strategy-proof voting mechanisms in environments where the designer lacks precise information about the probability distribution of individual utility profiles. This uncertainty over the true distribution is represented by a set of multiple distributions, and the designer evaluates mechanisms using either the worst-case utility sum or worst-case regret. Departing from the existing literature, we do not assume that utility functions are single-peaked or that the set of possible utility functions is maximally rich. In this setting, we show that the median voter rule is the unique optimal mechanism under both criteria. Our result provides a new justification for this well-known mechanism from a welfare perspective.