11-March
Monday
07.30 pm IST
Introduction to Deep Learning
Introduction to Neural Networks
Perceptions and Activation Functions
Building Your First Neural Network
12-March
Tuesday
07.30 pm IST
Convolutional Neural Networks (CNNs)
Introduction to CNNs
CNN Architectures (e.g., LeNet, AlexNet, VGG)
13-March
Wednesday
07.30 pm IST
Recurrent Neural Networks (RNNs)
Introduction to RNNs
Applications of RNNs (e.g., Sequence-to-Sequence Models)
14-March
Thursday
07.30 pm IST
Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRUs)
Understanding LSTMs and GRUs
Overcoming the Vanishing Gradient Problem
15-March
Friday
07.30 pm IST
Transfer Learning and Pre-trained Models
Leveraging Pre-trained Models (e.g., Transfer Learning)
Fine-tuning and Customizing Pre-trained Models
18-March
Monday
07.30 pm IST
Deep Learning Best Practices and Advanced Topics
Pre-trained Models (e.g., Inception, ResNet and DenseNet)
Hyperparameter Tuning and Optimization
19-March
Tuesday
07.30 pm IST
Object Detection with Deep Learning
Introduction to Object Detection
Popular Object Detection Architectures (e.g., Faster R-CNN, YOLO)
20-March
Wednesday
07.30 pm IST
Object Detection with Deep Learning
Hands-on Exercise: Object Detection using a Pre-trained Model
Fine-tuning Object Detection Models
21-March
Thursday
07.30 pm IST
Image Segmentation
Introduction to Image Segmentation
Semantic Segmentation vs. Instance Segmentation
22-March
Friday
07.30 pm IST
Hands-on Exercise: Image Segmentation
Hands-on Exercise: Image Segmentation using Deep Learning
Applications of Image Segmentation