Publications

2024

 

54. Alugubelli, Y. R.; Xiao, J.; Khatua, K.; Kumar, S.; Sun, L.; Ma, Y.; Ma, X.; Vulupala, V. R.; Atla, S. R.; Blankenship, L.; Coleman, D. D.; Xie, X.; Neuman, B. W.*; Liu, W. R.*; Xu, S.*  Discovery of First-in-Class PROTAC Degraders of SARS-CoV-2 Main Protease. J. Med. Chem., 2024, acs.jmedchem.3c02416 

https://doi.org/10.1021/acs.jmedchem.3c02416 


53. Khatua, K.; Alugubelli, Y. R.; Yang, K.; Vulupala, V. R.; Blankenship, L.; Coleman, D. D.; Atla, S. R.; Chaki, S. P.; Geng, Z.; Ma, X.; Xiao, J.; Chen, P.; Cho, C-C.; Vatansever, E.; Ma, Y.; Yu, G.; Neuman, B. W.; Xu, S.*; Liu, W. R.* Azapeptides with Unique Covalent Warheads as SARS-CoV-2 Main Protease Inhibitors. Antivir. Res., 2024, j.antiviral.2024.105874

https://doi.org/10.1016/j.antiviral.2024.105874 


52. Sheng, Y.; Kuo, S. T.; Yang. T.; Zhang, H.; Russell, D. T.; Yan, X.; Xu, S.; Liu, W. R.;* Fierke, C.* “BRD4354 is a Potent Covalent Inhibitor against the SARS-CoV-2 Main Protease”. Biochem., 2024, 63, 402–406.

https://doi.org/10.1021/acs.biochem.3c00685 


51. Chen, P.; Guo, X.; Zhang, H.; Dubey, G.; Geng, Z.; Fierke, C.; Xu, S.; Hampton, J.;* Liu, W. R.*  Leveraging a Phage-Encoded Noncanonical Amino Acid: A Novel Pathway to Potent and Selective Epigenetic Reader Protein Inhibitors. ACS Cent. Sci. 2024, acscentsci.3c01419.

https://doi.org/10.1021/acscentsci.3c01419  


2023

 

50. Geng, Z.; Atla, S. R.; Shaabani, N.; Vulupala, V. R.; Yang, K.; Alugubelli, Y. R.; Khatua, K.; Chen, P.; Xiao, J.; Blankenship, L.; Ma, X.; Vatansever, E.; Cho, C-C.; Ma, Y.; Allen, R.; Ji , H.; Xu, S.*; Liu, W. R.* A Systematic Survey of Reversibly Covalent Dipeptidyl Inhibitors of the SARS-CoV-2 Main Protease. J. Med. Chem., 2023, 66, 11040–11055.

https://doi.org/10.1021/acs.jmedchem.3c00221

 

49. Hampton, J. T.; Cho, C.-C.; Coleman, D.; Geng, Z.; Chen, P.; Dubey, P.; Sylvain, L.; Xu, S.; Liu, W. R.* An amber-encoding helper phage for more efficient phage display of noncanonical amino acids, Nucleic Acids Res., 2023, 51, 6566-6577.

https://doi.org/10.1093/nar/gkad488

 

48. Yang, K.; Blankenship, L.; Kuo, S-T.; Sheng, Y.; Li, P.; Fierkee, C. A.; Russell, D. H.; Yan, X.; Xu, S.*; Liu. W. R.* A Novel Y-Shaped, S–O–N–O–S-Bridged Cross-Link between Three Residues C22, C44, and K61 Is Frequently Observed in the SARS-CoV-2 Main Protease. ACS Chem. Biol. 2023, 18, 449-455. 

https://doi.org/10.1021/acschembio.2c00695 

 

2022

 

47. Ma, Y.; Yang, K.; Geng, Z.; Alugubelli, Y.; Shaabani, N.; Vantasever, C.; Ma, X.; Cho, C.; Khatua, K.; Blankenship, L.; Li, P.; Allen R.; Ji, H.*; Xu, S.*; Liu. W.R.* A multi-pronged evaluation of aldehyde-based tripeptidyl main protease inhibitors as SARS-CoV-2 antivirals.  Eur. J. Med. Chem. 2022, 240, 114570. 

https://doi.org/10.1016/j.ejmech.2022.114570

 

46. Cheng, H.; Yang, T.; Edwards, M.; Tang, S.; Xu, S.*; Yan, X.* Picomole-Scale Transition Metal Electrocatalysis Screening Platform for Discovery of Mild C–C Coupling and C–H Arylation through in situ Anodically Generated Cationic Pd. J. Am. Chem. Soc. 2022, 144, 1306-1312

https://doi.org/10.1021/jacs.1c11179

 

45. Alugubelli, Y.; Geng, Z.; Yang, K.; Shaabani, N.; Khatua, K.; Ma, X.; Vantasever, C.; Cho, C.; Ma, Y.; Blankenship, L.; Yu, G.; Sankaran, B.; Li, P.; Allen R.; Ji, H.*; Xu, S.*; Liu. W.R.* A systematic exploration of boceprevir-based main protease inhibitors as SARS-CoV-2 antivirals. Eur. J. Med. Chem. 2022, 240, 114596. 

https://doi.org/10.1016/j.ejmech.2022.114596

 

44. Cao, W.; Cho, C.; Geng, Z.; Ma, X.; Shaabani, N.; Vantasever, C.; Yang, K.; Qiao, Y.; Allen, R.; Neuman, B.; Ji, H.*; Xu, S.*; Liu. W.R.* Evaluation of SARS-CoV-2 Main Protease Inhibitors Using a Novel Cell-Based Assay. ACS Cent. Sci., 2022, 8, 192-204. Highlighted as a Cover Story. 

https://doi.org/10.1021/acscentsci.1c00910

 

43. Ma, X.; Alugubelli, Y.; Ma, Y.; Vantasever, C.; Scott, D.; Qiao, Y.; Yu, G.; Xu, S.*; Liu. W.R.* MPI8 is Potent against SARS-CoV-2 by Inhibiting Dually and Selectively the SARS-CoV-2 Main Protease and the Host Cathepsin L. ChemMedChem 2022, 17, e202100456. Highlighted as a Cover Story. 

https://doi.org/10.1002/cmdc.202100456

 

42. Cho, C.; Li, S.; Yang, K.; Lalonde, T.; Yu, G.; Qiao, Y.; Xu, S.*; Liu. W.R.* Drug Repurposing for the SARS-CoV-2 Papain-Like Protease. ChemMedChem 2022, 17, e202100455. 

https://doi.org/10.1002/cmdc.202100455

 

41. Li, S.; Yang, K.; Blankenship, L.; Xu, S.*; Wang, H.*; Liu, W. R.* An Enhanced Hybrid Screening Approach to Identify Potent Inhibitors for the SARS-CoV-2 Main Protease from the NCI Compound Library. Front. Chem., 2022, 816576.

https://doi.org/10.3389/fchem.2022.816576

 

40. Wang, Y.; Xie, H.; Alugubelli, Y. R.; Ma, Y.; Xu, S.; Ma, J.; Liu, W.R.; Liang, D. Accurate Mass Identification of an Interfering Water Adduct and Strategies in Development and Validation of an LC-MS/MS Method for Quantification of MPI8, a Potent SARS-CoV-2 Main Protease Inhibitor, in Rat Plasma in Pharmacokinetic Studies. Pharmaceuticals 2022, 15, 676. 

https://doi.org/10.3390/ph15060676

 

39. Huang, K-H.; Ghosh, J.; Xu, S.*; Cooks, R. G.* Late-Stage Functionalization and Characterization of Drugs by High-Throughput Desorption Electrospray Ionization Mass Spectrometry. ChemPlusChem 2022, 87, e202100449.

https://doi.org/10.1002/cplu.202100449

 

38. Yang, K.; Kuo, S-T.; Blankenship, L.; Geng, Z.; Li, S.; Russell, D.; Yan, X.; Xu, S.*; Liu, W. R*. Repurposing Halicin as a Potent Covalent Inhibitor for the SARS-CoV-2 Main Proteas. Current Research in Chemical Biology (CRCHBI), 2022, 100025.

https://doi.org/10.1016/j.crchbi.2022.100025

 

37. Yang, K.; Leeuwon. S.; Xu, S.; Liu, W. R*. Evolutionary and Structural Insights about Potential SARS-CoV-2 Evasion of Paxlovid. J. Med. Chem. 2022, 65, 8686-8698.

https://doi.org/10.1021/acs.jmedchem.2c00404

 

36. Cao, W.; Geng, Z.; Wang, N.; Pan, Q.; Guo, S.; Xu, S.; Zhou, J.*; Liu, W. R.* A Recurring Chemogenetic Switch for Chimeric Antigen Receptor T Cells. Angew. Chem. Int. Ed. 2022, 61, e202109550

https://doi.org/10.1002/anie.202109550


35. Hampton, J. T.; Lalonde, T. J.; Tharp, J. M.; Kurra, Y.; Alugubelli, Y. R.; Roundy, C. M.; Hamer, G. L.; Xu, S.; Liu, W. R*. Novel Regioselective Approach to Cyclize Phage-Displayed Peptides in Combination with Epitope-Directed Selection to Identify a Potent Neutralizing Macrocyclic Peptide for SARS-CoV-2. ACS Chem. Biol. 2022, 17, 2911-2922.

https://doi.org/10.1021/acschembio.2c00565 

 

34. Morse, J. S.; Sheng, Y. J.; Hampton, J. T.; Sylvain, L. D.; Das, S.; Alugubelli, Y. R.; Chen, P.;  Yang, K.; Xu, S.; Fierke, C. A.*; Liu, W. R.* Phage-assisted, active site-directed ligand evolution of a potent and selective histone deacetylase 8 inhibitor. Protein Sci. 2022; 31, e4512.

https://doi.org/10.1002/pro.4512

 

33. Cho, C.; Ma, X.; Xu, S.; Liu, W. R*. The Pyrrolysyl-tRNA Synthetase Activity can be Improved by a P188 Mutation that Stabilizes the Full-Length Enzyme. J. Mol. Biol., 2022, 434, 167453.

https://doi.org/10.1016/j.jmb.2022.167453

 

32. Vantasever, C.; Yang, K.; Geng, Z.; Qiao, Y.; Li, P.; Xu, S.; Liu, W. R*. A Designed, Highly Efficient Pyrrolysyl-tRNA Synthetase Mutant Binds o-Chlorophenylalanine Using Two Halogen Bonds. J. Mol. Biol., 2022, 434, 167534.

https://doi.org/10.1016/j.jmb.2022.167534 


2021


31. Fu, X.; Qi, Q.; Xu, S.*; Negishi, E. Chemo-and Stereoselective Dearomative Coupling of Indoles and Bielectrophilic β-Imino Boronic Esters via Imine-Induced 1,2-Boronate Migration. Org. Lett. 2021, 23, 8984-8988.

https://doi.org/10.1021/acs.orglett.1c03510

 

30. Yang, K.; Ma, X.; Ma, Y.; Alugubelli, Y. R.; Scott, D. A.; Vatansever, E. C.; Drelich, A. K.; Sankaran, B.; Geng, Z.; Blankenship, L. R.; Ward, H. E.; Sheng, Y.; Hsu, J. C.; Kratch, K. C.; Zhao, B.; Hayatshahi, H. S.; Liu, J.; Li, P.; Fierke, C. A.; Tseng, C.-T. K.;* Xu, S.*; Liu, W. R.* A Quick Route to Multiple Highly Potent SARS-CoV-2 Main Protease Inhibitors. ChemMedChem 2021, 16, 942-949.

https://doi.org/10.1002/cmdc.202000924

 

29. Ma, X.; Xu, L.; Xu, S.; Klein, B.; Wang, H.; Das, S.; Li, K.; Yang, K.; Shi, X.; Liu, W. R.*, H, Wen.* Discovery of Selective Small-Molecule Inhibitors for the ENL YEATS Domain. J. Med. Chem. 2021, 64, 10997-11013.

https://doi.org/10.1021/acs.jmedchem.1c00367

 

28. Vatansever, E. C.; Yang, K.; Kratch, K. C.; Drelich, A.; Cho, C.-C.; Mellott, D. M.; Xu, S.; Tseng, C.-T. K.*; Liu, W. R.* Bepridil is Potent against SARS-CoV-2 In Vitro. Proc. Natl. Acad. Sci. USA. 2021, 118, e2012201118

https://doi.org/10.1073/pnas.2012201118

 

2020

 

27. Tharp, J.M.; Hampton, J.T.; Reed. C.A.; Ehnbom, A.; Chen. P.C.; Morse, J.S.; Kurra, Y.; Perez. L.M.; Xu, S.*; Liu. W.R.* A Phage-Displayed, Active Site-Directed Ligand Evolution Technique. Nat. Commun. 2020, 11, 1392.

https://doi.org/10.1038/s41467-020-15057-7  


26. Morse, J. S.; Lalonde, T.; Xu, S.*; Liu, W. R.* Learning from the past: possible urgent prevention and treatment options for severe acute respiratory infections caused by 2019‐nCoV. ChemBioChem 2020, 21, 730-738.

https://doi.org/10.1002/cbic.202000047

 

25. Qiao, Y.; Yu, G.; Kratch, K. C.; Wang, X.; Wang, W.; Leeuwon, S.; Xu, S.; Liu, W. R.* Expressed Protein Ligation Without Intein.  J. Am. Chem. Soc. 2020, 142, 7047-7054.

https://doi.org/10.1021/jacs.0c00252

 

24. Cheng, H.; Tang, S.; Yang, T.;  Xu, S.; Yan, X.* Accelerating Electrochemical Reactions in a Voltage‐Controlled Interfacial Microreactor. Angew. Chem. Int. Ed. 2020, 59, 19862-19867.

https://doi.org/10.1002/anie.202007736

 

Pre Texas A&M Publications


23. Qi, Q.; Yang, X.; Fu, X.; Xu, S.*; Negishi, E.* Highly enantiospecific borylation for chiral α‐amino tertiary boronic esters, Angew. Chem. Int. Ed., 2018, 57, 15138-15142.

https://doi.org/10.1002/anie.201809389 

 

22. Xu, S.; Wang, C.; Komiyama, M.; Tomonari, Y.; Negishi, E.* Asymmetric synthesis of chiral cyclopentanes bearing an all-carbon quaternary stereocenter via Zr-catalyzed doubled carboalumination. Angew. Chem. Int. Ed., 2017, 56, 11502-11505.

https://doi.org/10.1002/anie.201706198 

 

21. Xu, S.; Li, H.; Komiyama, M.; Oda, A.; Negishi, E.* One-step homologation for the catalytic asymmetric synthesis of deoxypropionates. Chem. Eur. J., 2017, 23, 149-156.

https://doi.org/10.1002/chem.201604478 

 

20. Xu, S.*; Negishi, E.* Zirconium-catalyzed asymmetric carboalumination of unactivated terminal alkenes. Acc. Chem. Res., 2016, 49, 2158-2168.

https://doi.org/10.1021/acs.accounts.6b00338 

 

19. Xu, S.; Komiyama, M.; Negishi, E.* Bis-[2-(diphenylphosphino)phenyl]ether (Dpe-Phos). e-EROS Encyclopedia of Reagents for Organic Synthesis, 2016, https://doi.org/10.1002/047084289X.rn00854.pub3.

 

18. Negishi, E.*; Xu, S. Catalytic enantioselective synthesis of chiral organic compounds of ultra-high purity of >99%ee. Proc. Jpn. Acad. 2015, 91, 369-393. 

Note: An invited publication for a special issue; highlighted as Front Cover of the issue

 

17. Xu, S.; Oda, A.; Li, H.; Bobinski, T.; Matsueda, Y.; Negishi, E.* Highly efficient, convergent, and enantioselective synthesis of phthioceranic acid. Angew. Chem. Int. Ed. 2015, 54, 9319-9322.

https://doi.org/10.1002/anie.201503818

 

16. Matsueda, Y.; Xu, S.; Negishi, E.* A novel highly enantio- and diastereoselective synthesis of vitamin E side-chain. Tetrahedron Lett. 2015, 56, 3346-3348. 

Invited for a special issue in memory of Professor Harry H. Wasserman

 

15. Xu, S.; Oda, A.; Negishi, E.* Highly enantioselective synthesis of chiral isotopomers of 1-alkanols via ZACA–Cu-catalyzed cross-coupling. Chem. Eur. J. 2014, 20, 16060-16064.

 

14. Xu, S.; Oda, A.; Kamada, H.; Negishi, E.* Highly enantioselective synthesis of γ-, δ-, and ε-chiral 1-alkanols via Zr-catalyzed asymmetric carboalumination of alkenes (ZACA)–Cu- or Pd-catalyzed cross-coupling. Proc. Natl. Acad. Sci. USA, 2014, 111, 8368-8373.

 

13. Yan, X.; Sokol, E.; Li, X.; Li, G.; Xu, S.; Cooks, R. G.* On-line reaction monitoring and mechanistic studies by Mass Spectrometry: Negishi cross-coupling, hydrogenolysis and reductive amination. Angew. Chem. Int. Ed. 2014, 53, 5931-5935.

 

12. Xu, S.; Negishi, E.* Syntheses of chiral heterocyclic compounds via Zirconium-catalyzed asymmetric carboalumination of alkynes (ZACA Reaction). Heterocycles 2014, 88, 845-877. 

Invited for a special issue dedicated to Professor Victor Snieckus

 

11. Xu, S.; Kim, E.; Wei, A.; Negishi, E.* Pd- and Ni-catalyzed cross-coupling reactions in the synthesis of organic electronic materials. Sci. Technol. Adv. Mater., 2014, 15, 044201.

 

10. Xu, S.; Kamada, H.; Kim, E.; Oda, A.; Negishi, E.* Palladium- or Nickel-Catalyzed Cross-Coupling with Organometals Containing Zinc, Aluminum, and Zirconium: The Negishi Coupling. Metal Catalyzed Cross-Coupling Reactions and More, de Meijere, A.; Braese, S.; Oestreich. M., Eds. Wiley-VCH, 2014, 133-278.

 

9. Wang, G.; Xu, S.; Hu, Q.; Zeng, F.; Negishi, E.* Search for highly efficient, stereoselective, and practical synthesis of complex organic compounds of medicinal importance as exemplified by the synthesis of the C21-C37 fragment of amphotericin B. Chem. Eur. J. 2013, 19, 12938-12942.

 

8. Xu, S.; Lee, C.T.; Wang, G.; Negishi, E.* Widely applicable synthesis of enantiomerically pure (≥99% ee) tertiary alkyl-containing 1-alkanols via ZACA–Pd- or Cu-catalyzed cross-coupling. Chem. Asian J., 2013, 8, 1829-1835. 

Invited for a special issue for the 15th Asian Chemical Congress

 

7. Xu, S.; Truex, N.; Mohan, S.; Negishi, E.* Pd-catalyzed cross-coupling reactions exhibiting catalyst turnover numbers (TONs) exceeding one million. Arkivoc, 2012 (vii) 242-252. 

Invited for a special issue dedicated to Professor Keith Smith

 

6. Xu, S.; Lee, C. T.; Rao, H.; Negishi, E.* Highly(≥98%) stereo- and regioselective trisubstituted alkene synthesis of wide applicability via 1-halo-1-alkyne hydroboration–tandem Negishi-Suzuki coupling or organoborate migratory insertion protocol. Adv. Synth. Catal., 2011, 353, 2981-2987.

 

5. Liu, H.; Xu, S.; Cheng, M.; Chen, Y.*; Xia, P.; Qian, K.; Xia, Y.; Yang, Z.; Chen, C.; Morris-Natschke, S. L.; Lee. K. H.* Anti-AIDS agents 87. New bio-isosteric dicamphanoyl-dihydropyranochromone (DCP) and dicamphanoyl-khellactone (DCK) analogues with potent anti-HIV activity. Bioorg. Med. Chem. Lett., 2011, 21, 5831-5834.

 

4. Negishi, E.*; Tobrman. T.; Rao, H.; Xu, S.; Lee, C. T. Highly (≥98%) selective trisubstituted alkene synthesis of wide applicability via fluoride-promoted Pd-catalyzed cross-coupling of alkenylboranes. Israel J. Chem., 2010, 50, 696-701. 

An invited publication for a special issue on Metal-Catalyzed Cross-Coupling Reactions

 

3. Xu, S.; Yan, X.; Chen, Y.*; Xia, P.*; Qian, K.; Yu, D.; Xia, Y.; Yang, Z.; Morris-Natschke, S. L.; Lee. K. H.* Anti-AIDS agents 84. Synthesis and anti-HIV activity of 2’-monomethyl-4-methyl- and 1’-thia-4-methyl-(3’R,4’R)-3’,4’-di-O-(S)-camphanoyl-(+)-cis-khellactone (DCK) analogs. Bioorg. Med. Chem., 2010, 18, 7203-7211.

 

2. Xu, S.; Yan, X.; Chen, Y.; Xia, P.* 9-Isopropenyl-4-Methyl-2H-Thieno[2,3-h] Chromen-2-One.  Acta Crystallogr. Sect. E, 2009, E65, o1311.

 

1. Xu, S.; Yan, X.; Zhang, Q.; Xia, P.; Chen, Y.* Unexpected rearrangement in the reaction of 7-mercapto-4-methylcoumarin with 1-mono- and 1,1-dimethyl propargyl alcohols. Synth. Commun., 2007, 37, 3801-3808.

Patents

 

3. Liu, W. R.; Fierke, C. A.; Xu, S.; Yang, K.; Ma, X.; Ma, Y.; Alugubelli, Y. R.; Vatansever, E. C.; Cho, C.-C.; Geng Z. Z.; Khatua, K. “SARS-CoV-2 main protease inhibitors”, 2022, US17/719,870

2. Liu, W. R.; Yang, K.; Vatansever, E. C.; Xu, S. “Compositions and methods for inhibition of SARS-CoV-2 viral infections”, 2020, US17/748,351

1. Negishi, E.; Xu, S.; Qi, Q.; Yang, X. “Chiral α-amino tertiary boronic esters”, 2020, US16/519,037