SAFOD drilling reports, real-time measurements, etc.
Erzinger, J., Wiersberg, T., and Dahms, E. (2004), Real-time mud gas logging during drilling of the SAFOD Pilot Hole in Parkfield, CA, Geophys. Res. Lett., 31, L15S18, doi:10.1029/2003GL019395.
Erzinger, J., Wiersberg, T., & Zimmer, M. (2006). Real‐time mud gas logging and sampling during drilling. Geofluids, 6(3), 225-233.
Zoback, M. D. (2006). SAFOD penetrates the San Andreas fault. Scientific Drilling, 2, 32-33.
Rizer, B. (2006). SAFOD - The San Andreas Fault Observatory at Depth and Its Relevance to Oil and Gas. Houston Geological Society Bulletin, 48 (5), 15-21.
Paul, P., and Zoback, M. D. (2006). Wellbore Stability Study for the SAFOD Borehole through the San Andreas Fault, Society of Petroleum Engineers, SPE102781.
Hickman, S., Zoback, M., Ellsworth, W., Boness, N., Malin, P., Roecker, S., & Thurber, C. (2007). Structure and properties of the San Andreas Fault in central California: Recent results from the SAFOD experiment. Scientific Drilling, 29-32.
Tobin, H., Ito, H., Behrmann, J. H., Hickman, S., & Kimura, G. (2007). IODP-ICDP Workshop examines challenges of fault zone drilling. IODP-MI.
Wiersberg, T., & Erzinger, J. (2007). Real-time mud gas monitoring: A technique to obtain information on the composition and distribution of gases at depth while drilling. Scientific drilling: reports on deep earth sampling and monitoring; Special issue, 1, 71-72.
Paul, P., & Zoback, M. (2008). Wellbore-stability study for the SAFOD borehole through the San Andreas fault. SPE drilling & completion, 23(04), 394-408.
Zoback, M., Hickman, S., Ellsworth, W., & SAFOD Science Team. (2011). Scientific drilling into the San Andreas fault zone–an overview of SAFOD's first five years. Scientific Drilling, 11, 14-28.
Weymer, B., Firth, J., Rumford, P., Chester, F., Chester, J., & Lockner, D. (2011). SAFOD Phase III Core Sampling and Data Management at the Gulf Coast Repository. Scientific Drilling, 11, 48-50.
Babaie, H. A., Cindi, M. B., Hadizadeh, J., & Kumar, A. (2013). Safod brittle microstructure and mechanics knowledge base (bm2kb). Computers & Geosciences, 56, 83-91.
Wong, T.-F. (2013). Drilling Into the San Andreas Fault. In Thermo-Hydromechanical and Chemical Coupling in Geomaterials and Applications (eds J.-F. Shao and N. Burlion). doi.org/10.1002/9781118623565.ch4
Holmes, E. M., Gaughan, A. E., Biddle, D. J., Stevens, F. R., & Hadizadeh, J. (2021). Geospatial Management and Analysis of Microstructural Data from San Andreas Fault Observatory at Depth (SAFOD) Core Samples. ISPRS International Journal of Geo-Information, 10(5), 332.
Seismic arrays measurements and vertical seismic profiling
Chavarria, J.A., et al. (2003), A Look Inside the San Andreas Fault at Parkfield Through Vertical Seismic Profiling. Science 302,1746-1748. doi:10.1126/science.1090711
Imanishi, K., Ellsworth, W. L., and Prejean, S. G. (2004), Earthquake source parameters determined by the SAFOD Pilot Hole seismic array, Geophys. Res. Lett., 31, L12S09, doi:10.1029/2004GL019420.
Oye, V., Chavarria, J. A., and Malin, P. E. (2004), Determining SAFOD area microearthquake locations solely with the Pilot Hole seismic array data, Geophys. Res. Lett., 31, L12S10, doi:10.1029/2003GL019403.
Chavarria, J. A., Malin, P. E., and Shalev, E. (2004), The SAFOD Pilot Hole seismic array: Wave propagation effects as a function of sensor depth and source location, Geophys. Res. Lett., 31, L12S07, doi:10.1029/2003GL019382.
Zhang, H., and Thurber, C. (2005), Adaptive mesh seismic tomography based on tetrahedral and Voronoi diagrams: Application to Parkfield, California, J. Geophys. Res., 110, B04303, doi:10.1029/2004JB003186.
Oye, V., and Ellsworth, W. L. (2005), Orientation of Three-Component Geophones in the San Andreas Fault Observatory at Depth Pilot Hole, Parkfield, California, Bulletin of the Seismological Society of America, 95 (2), 751-758, doi:10.1785/0120040130.
Li, Y. G., Chen, P., Cochran, E. S., Vidale, J. E., & Burdette, T. (2006). Seismic evidence for rock damage and healing on the San Andreas fault associated with the 2004 M 6.0 Parkfield earthquake. Bulletin of the Seismological Society of America, 96(4B), S349-S363.
Peng, Z., Vidale, J. E., & Houston, H. (2006). Anomalous early aftershock decay rate of the 2004 Mw6. 0 Parkfield, California, earthquake. Geophysical Research Letters, 33(17).
Roecker, S., Thurber, C., Roberts, K., & Powell, L. (2006). Refining the image of the San Andreas Fault near Parkfield, California using a finite difference travel time computation technique. Tectonophysics, 426(1-2), 189-205.
Sonley, E., Abercrombie, R. E., Abercrombie, R., McGarr, A., Di Toro, G., & Kanamori, H. (2006). Effects of methods of attenuation correction on source parameter determination. Geophysical Monograph-American Geophysical Union, 170, 91.
Malin, P., Shalev, E., Balven, H., & Lewis‐Kenedi, C. (2006). Structure of the San Andreas fault at SAFOD from P‐wave tomography and fault‐guided wave mapping. Geophysical research letters, 33(13).
Rentsch, S., Buske, S., Kummerow, J. R., Shapiro, S. A., Chavarria, J. A., & Goertz, A. (2006, October). Passive seismic monitoring using Gaussian Beams with application to borehole data from the San Andreas Fault at Parkfield, California. In SEG International Exposition and Annual Meeting (pp. SEG-2006). SEG.
Bleibinhaus, F., Hole, J. A., Ryberg, T., & Fuis, G. S. (2007). Structure of the California Coast Ranges and San Andreas Fault at SAFOD from seismic waveform inversion and reflection imaging. Journal of Geophysical Research: Solid Earth, 112(B6).
Dreger, D., Nadeau, R. M., & Chung, A. (2007). Repeating earthquake finite source models: Strong asperities revealed on the San Andreas Fault. Geophysical Research Letters, 34(23).
Li, Y. G., Chen, P., Cochran, E. S., & Vidale, J. E. (2007). Seismic velocity variations on the San Andreas fault caused by the 2004 M 6 Parkfield earthquake and their implications. Earth, planets and space, 59, 21-31.
Chavarria, J. A., Goertz, A., Karrenbach, M., Paulsson, B., Milligan, P., Soutyrine, V., ... & LaFlame, L. (2007). The use of VSP techniques for fault zone characterization: An example from the San Andreas Fault. The Leading Edge, 26(6), 770-776.
Ellsworth, W. L., Malin, P. E., Imanishi, K., Roecker, S. W., Nadeau, R., Oye, V., ... & Zoback, M. D. (2007). Seismology inside the fault zone: Applications to fault-zone properties and rupture dynamics. Scientific Drilling, 84-87.
Li, Y. G., Malin, P. E., & Vidal, J. E. (2007). Low-velocity damage zone on the San Andreas Fault at Depth near SAFOD site at Parkfield delineated by fault-zone trapped waves. Scientific Drilling, 73-77.
Vasconcelos, I., Snieder, R., Sava, P., Taylor, S. T., Malin, P., & Chavarria, J. A. (2007, September). Broadside interferometric and reverse-time imaging of the San Andreas Fault at depth. In 2007 SEG Annual Meeting. OnePetro.
PI, Z. P. (2007). 2006 Southern California Earthquake Center Annual Report The Transition from Foreshock to Main shock to Aftershock in California and Japan.
Taylor, S., Miller, D. E., Haldorsen, J. B., & Coates, R. (2007, September). Interferometric deconvolution of VSP data. In 2007 SEG Annual Meeting. OnePetro.
Niu, F., Silver, P. G., Daley, T. M., Cheng, X., & Majer, E. L. (2008). Preseismic velocity changes observed from active source monitoring at the Parkfield SAFOD drill site. Nature, 454(7201), 204-208.
Li, Y. G., & Malin, P. E. (2008). San Andreas Fault damage at SAFOD viewed with fault‐guided waves. Geophysical Research Letters, 35(8).
Zhang, H., Thurber, C., & Bedrosian, P. (2009). Joint inversion for vp, vs, and vp/vs at SAFOD, Parkfield, California. Geochemistry, Geophysics, Geosystems, 10(11).
Waldhauser, F. (2009). Near-real-time double-difference event location using long-term seismic archives, with application to Northern California. Bulletin of the Seismological Society of America, 99(5), 2736-2748.
McGarr, A., Boettcher, M., Fletcher, J. B., Sell, R., Johnston, M. J., Durrheim, R., ... & Milev, A. (2009). Broadband records of earthquakes in deep gold mines and a comparison with results from SAFOD, California. Bulletin of the Seismological Society of America, 99(5), 2815-2824.
Reshetnikov, A., Buske, S., & Shapiro, S. A. (2009, October). Active seismic imaging using microseismic events. In 2009 SEG Annual Meeting. OnePetro.
Lewis, M. A., & Ben-Zion, Y. (2010). Diversity of fault zone damage and trapping structures in the Parkfield section of the San Andreas Fault from comprehensive analysis of near fault seismograms. Geophysical Journal International, 183(3), 1579-1595.
Powers, P. M., & Jordan, T. H. (2010). Distribution of seismicity across strike‐slip faults in California. Journal of Geophysical Research: Solid Earth, 115(B5).
Chen, K. H., Bürgmann, R., Nadeau, R. M., Chen, T., & Lapusta, N. (2010). Postseismic variations in seismic moment and recurrence interval of repeating earthquakes. Earth and Planetary Science Letters, 299(1-2), 118-125.
Reshetnikov, A., Buske, S., and Shapiro, S. A. (2010), Seismic imaging using microseismic events: Results from the San Andreas Fault System at SAFOD, J. Geophys. Res., 115, B12324, doi:10.1029/2009JB007049.
Wu, J., Hole, J. A., & Snoke, J. A. (2010). Fault zone structure at depth from differential dispersion of seismic guided waves: evidence for a deep waveguide on the San Andreas Fault. Geophysical Journal International, 182(1), 343-354.
Rentsch, S., Buske, S., Gutjahr, S., Kummerow, J., & Shapiro, S. A. (2010). Migration-based location of seismicity recorded with an array installed in the main hole of the San Andreas Fault Observatory at Depth (SAFOD). Geophysical Journal International, 182(1), 477-492.
Chen, K. H., & Nadeau, R. M. (2010). Triggering Effect of 2004 M6 Parkfield Event on Earthquake Cycle of Small Repeating Events. Earth and Planetary Science Letters, 299, 118-125.
Pollitz, F., Rubinstein, J. L., & Ellsworth, W. L. (2010). Analysis and Modeling of the Wavefield Generated by Explosions at the San Andreas Fault Observatory at Depth. Geological Survey Reston VA.
Ellsworth, W. L., & Malin, P. E. (2011). Deep rock damage in the San Andreas Fault revealed by P-and S-type fault-zone-guided waves. Geological Society, London, Special Publications, 359(1), 39-53.
Pollitz, F. F., Rubinstein, J., & Ellsworth, W. (2012). Source characterization of near‐surface chemical explosions at SAFOD. Bulletin of the Seismological Society of America, 102(4), 1348-1360.
Ayele, M. M. (2012). Crustal Velocity Structure around the SAFOD Borehole using Vertical Wave Gradiometry.
Zhang, H., Maceira, M., Roux, P., & Thurber, C. (2014). Joint inversion of body-wave arrival times and surface-wave dispersion for three-dimensional seismic structure around SAFOD. Pure and Applied Geophysics, 171, 3013-3022.
Peng, Z., Shelly, D. R., & Ellsworth, W. L. (2015). Delayed dynamic triggering of deep tremor along the Parkfield‐Cholame section of the San Andreas Fault following the 2014 M6. 0 South Napa earthquake. Geophysical Research Letters, 42(19), 7916-7922.
Jeppson, T. N., & Tobin, H. J. (2015). San Andreas fault zone velocity structure at SAFOD at core, log, and seismic scales. Journal of Geophysical Research: Solid Earth, 120(7), 4983-4997.
Pollitz, F. F., Ellsworth, W., & Rubinstein, J. (2015). Interpretation of S Waves Generated by Near-Surface Chemical Explosions at SAFOD. Bulletin of the Seismological Society of America, 105(6), 2835-2851.
Langston, C. A., & Ayele, M. M. (2016). Vertical seismic wave gradiometry: Application at the San Andreas Fault Observatory at DepthVertical seismic wave gradiometry. Geophysics, 81(3), D233-D243.
Abercrombie, R. E., Chen, X., & Zhang, J. (2020). Repeating earthquakes with remarkably repeatable ruptures on the San Andreas Fault at Parkfield. Geophysical Research Letters, 47(23), e2020GL089820.
Piana Agostinetti, N., Giacomuzzi, G., & Chiarabba, C. (2020). Across‐fault velocity gradients and slip behavior of the San Andreas Fault near Parkfield. Geophysical Research Letters, 47(1), e2019GL084480.
Chang, K., & Zhang, H. (2020). Passive seismic imaging of near vertical structures around the SAFOD site, California, jointly using scattered P and SH waves. Journal of Geophysical Research: Solid Earth, 125(9), e2019JB019017.
Sheng, Y., Ellsworth, W. L., Lellouch, A., & Beroza, G. C. (2021). Depth constraints on coseismic velocity changes from frequency‐dependent measurements of repeating earthquake waveforms. Journal of Geophysical Research: Solid Earth, 126(2), e2020JB020421.
Liang, C., Cao, F., Liu, Z., & Chang, Y. (2023). A review of the wave gradiometry method for seismic imaging. Earthquake Science, 36(3), 254-281.
Shear wave anisotropy and shear velocities
Brocher, T. M. (2005), Empirical Relations between Elastic Wave Speeds and Density in the Earth's Crust, Bulletin of the Seismological Society of America, 95 (6), 2081-2092, doi:10.1785/0120050077.
Taylor, S., Malin, P., and Haldorsen, J., (2005), Shear wave anisotropy observed in VSP data at the San Andreas fault observatory at depth, SEG Technical Program, 174-177.
Rousseau, A. (2005). Is the San Andreas Fracture a bayonet-shaped fracture as inferred from the acoustic body waves in the SAFOD Pilot hole?. arXiv preprint physics/0503183.
Boness, N. L., & Zoback, M. D. (2006). A multiscale study of the mechanisms controlling shear velocity anisotropy in the San Andreas Fault Observatory at Depth. Geophysics, 71(5), F131-F146.
Zhang, H., Liu, Y., Thurber, C., & Roecker, S. (2007). Three‐dimensional shear‐wave splitting tomography in the Parkfield, California, region. Geophysical Research Letters, 34(24).
Brocher, T. M. (2008). Compressional and shear-wave velocity versus depth relations for common rock types in northern California. Bulletin of the Seismological Society of America, 98(2), 950-968.
Brocher, T. M. (2008). Key elements of regional seismic velocity models for long period ground motion simulations. Journal of seismology, 12, 217-221.
Liu, Y., Zhang, H., Thurber, C., & Roecker, S. (2008). Shear wave anisotropy in the crust around the San Andreas fault near Parkfield: spatial and temporal analysis. Geophysical Journal International, 172(3), 957-970.
Oye, V. (2008). Small Scale Fault Structure from SAFOD area Microearthquakes Combining Waveform Correlation and Shear Wave Splitting Analysis.
Taylor, S. T. (2009). Vs, Vp, and trends of elastic constants for active faults. In SEG Technical Program Expanded Abstracts 2009 (pp. 2223-2227). Society of Exploration Geophysicists.
Lewis, M. A., & Gerstoft, P. (2010, October). Shear wave splitting in the SAFOD pilot hole using seismic interferometry. In 2010 SEG Annual Meeting. OnePetro.
Rubinstein, J. L., Pollitz, F. F., & Ellsworth, W. L. (2011). Analysis and Modeling of Shear Waves Generated by Explosions at the San Andreas Fault Observatory at Depth. Geological Survey Reston VA.
Lewis, M. A., & Gerstoft, P. (2012). Shear wave anisotropy from cross-correlation of seismic noise in the Parkfield pilot hole. Geophysical Journal International, 188(2), 626-630.
Politz, F. F., Ellsworth, W. L., & Rubinstein, J. L. (2012). Analysis and Modeling of the Shear Waves Generated by Explosions at the San Andreas Fault Observatory at Depth. Geological Survey Menlo Park CA.
Measurements of fault stress and fracture
Hickman, S., and Zoback, M. (2004), Stress orientations and magnitudes in the SAFOD pilot hole, Geophys. Res. Lett., 31, L15S12, doi:10.1029/2004GL020043.
Boness, N.L., and Zoback, M.D. (2004), Stress-Induced Seismic Velocity Anisotropy And Physical Properties In The Safod Pilot Hole In Parkfield, Ca., NARMS, ARMA-04-540.
Chéry, J., Zoback, M. D., and Hickman, S. (2004), A mechanical model of the San Andreas fault and SAFOD Pilot Hole stress measurements, Geophys. Res. Lett., 31, L15S13, doi:10.1029/2004GL019521.
Taira, T. A., Silver, P. G., Niu, F., & Nadeau, R. M. (2008). Detecting seismogenic stress evolution and constraining fault zone rheology in the San Andreas Fault following the 2004 Parkfield earthquake. Journal of Geophysical Research: Solid Earth, 113(B3).
Tembe, S., Lockner, D., & Wong, T. F. (2009). Constraints on the stress state of the San Andreas Fault with analysis based on core and cuttings from San Andreas Fault Observatory at Depth (SAFOD) drilling phases 1 and 2. Journal of Geophysical Research: Solid Earth, 114(B11).
Daub, E. G., & Carlson, J. M. (2010). Friction, fracture, and earthquakes. Annu. Rev. Condens. Matter Phys., 1(1), 397-418.
Day‐Lewis, A., Zoback, M., & Hickman, S. (2010). Scale‐invariant stress orientations and seismicity rates near the San Andreas Fault. Geophysical Research Letters, 37(24).
McGarr, A., Fletcher, J. B., Boettcher, M., Beeler, N., & Boatwright, J. (2010). Laboratory-based maximum slip rates in earthquake rupture zones and radiated energy. Bulletin of the Seismological Society of America, 100(6), 3250-3260.
Zoback, M. D., Paul, P., & Lucier, A. (2010, August). Utilizing observations of borehole failure in deviated wellbores to constrain the full stress tensor in deep wells and mines: application to two complex case studies. In ISRM International Symposium on In-Situ Rock Stress. OnePetro.
Gratier, J. P., Richard, J., Renard, F., Mittempergher, S., Doan, M. L., Di Toro, G., ... & Boullier, A. M. (2011). Aseismic sliding of active faults by pressure solution creep: Evidence from the San Andreas Fault Observatory at Depth. Geology, 39(12), 1131-1134.
Davidsen, J., Schumann, A. Y., and Naylor, M. (2013), Are scale-invariant stress orientations related to seismicity rates near the San Andreas fault?, Geophys. Res. Lett., 40, 6074– 6078, doi:10.1002/2013GL057919.
Gratier, J. P., Renard, F., & Vial, B. (2014). Postseismic pressure solution creep: Evidence and time‐dependent change from dynamic indenting experiments. Journal of Geophysical Research: Solid Earth, 119(4), 2764-2779.
Abercrombie, R. E. (2015). Investigating uncertainties in empirical Green's function analysis of earthquake source parameters. Journal of Geophysical Research: Solid Earth, 120(6), 4263-4277.
Chen, K., Kunz, M., Tamura, N., & Wenk, H. R. (2015). Residual stress preserved in quartz from the San Andreas Fault Observatory at Depth. Geology, 43(3), 219-222.
Kim, A., Dreger, D. S., Taira, T. A., & Nadeau, R. M. (2016). Changes in repeating earthquake slip behavior following the 2004 Parkfield main shock from waveform empirical Green's functions finite‐source inversion. Journal of Geophysical Research: Solid Earth, 121(3), 1910-1926.
Luttrell, K., & Smith-Konter, B. (2017). Limits on crustal differential stress in southern California from topography and earthquake focal mechanisms. Geophysical Journal International, 211(1), 472-482.
Yang, C., Niu, F., Daley, T. M., & Taira, T. A. (2019). Continuous measurement of stress‐induced travel‐time variations at SAFOD. Seismological Research Letters, 90(1), 212-218.
Zhang, J., Chen, X., & Abercrombie, R. E. (2022). Spatiotemporal variability of earthquake source parameters at Parkfield, California, and their relationship with the 2004 M6 earthquake. Journal of Geophysical Research: Solid Earth, 127(6), e2021JB022851.
Johnson, K. M. (2022). Inferring fault rheology from observations and simulations of transient creep on the central San Andreas fault.
Liu, X., Xiong, Z., & Zhang, H. (2023). Nonlinear strain energy based (NSEB) criterion for quasi-brittle materials under multiaxial stress states. Construction and Building Materials, 375, 131001.
Seismic imaging with drill bit noise
Taylor, S. et. al. (2005), Drill Bit Seismic Imaging of the San Andreas Fault System At SAFOD, SEG Annual Meeting, SEG-2005-2657.
Vasconcelos, I., Snieder, R., Taylor, S. T., Chavarria, J. A., & Sava, P. (2007). Broadside imaging of the San Andreas fault system at depth. In SEG Annual Meeting.
Taylor, S. T. (2007). Low-frequency acoustic emissions associated with microseismic failures. In SEG Technical Program Expanded Abstracts 2007 (pp. 1317-1321). Society of Exploration Geophysicists.
Vasconcelos, I., Snieder, R., Sava, P., Taylor, T., Malin, P., & Chavarria, A. (2008). Drill bit noise illuminates the San Andreas Fault. Eos, Transactions American Geophysical Union, 89(38), 349-349.
Fichtner, A., & Fichtner, A. (2011). Application of Full Waveform Tomography to Active-Source Surface-Seismic Data. Full Seismic Waveform Modelling and Inversion, 267-280.
Haldorsen, J. B., Taylor*, S., & Miller, D. E. (2014). Fault delineation using earthquake energy as a source for pre-stack depth imaging. In SEG Technical Program Expanded Abstracts 2014 (pp. 2288-2293). Society of Exploration Geophysicists.
Becken, M., Ritter, O., Weckmann, U., & Bedrosian, P. (2007). Recent and on-going MT studies of the San Andreas Fault zone in Central California. In 22. Kolloquium “Elektromagnetische Tiefenforschung” (pp. 119-125). Deutsche Geophysikalische Gesellschaft DGG.
Becken, M., Ritter, O., Park, S. K., Bedrosian, P. A., Weckmann, U., & Weber, M. (2008). A deep crustal fluid channel into the San Andreas Fault system near Parkfield, California. Geophysical Journal International, 173(2), 718-732.
Becken, M., & Ritter, O. (2012). Magnetotelluric studies at the San Andreas Fault Zone: implications for the role of fluids. Surveys in Geophysics, 33, 65-105.
Bennington, N. L., Zhang, H., Thurber, C. H., & Bedrosian, P. A. (2015). Joint inversion of seismic and magnetotelluric data in the Parkfield Region of California using the normalized cross-gradient constraint. Pure and Applied Geophysics, 172, 1033-1052.
Parés, J. M., Schleicher, A. M., van der Pluijm, B. A., & Hickman, S. (2008). Paleomagnetic reorientation of San Andreas fault observatory at depth (SAFOD) core. Geophysical research letters, 35(2).
Optical fibers sensor measurements of seismic wave velocity
Zumberge, M. A. (2007, October). Geophysical applications of optical fiber sensors. In Fiber Optic Sensors and Applications V (Vol. 6770, pp. 167-175). SPIE.
Blum, J. A., Nooner, S. L., & Zumberge, M. A. (2008). Recording earth strain with optical fibers. IEEE Sensors Journal, 8(7), 1152-1160.
Blum, J., Igel, H., & Zumberge, M. (2010). Observations of Rayleigh-wave phase velocity and coseismic deformation using an optical fiber, interferometric vertical strainmeter at the SAFOD borehole, California. Bulletin of the Seismological Society of America, 100(5A), 1879-1891.
Lellouch, A., Yuan, S., Spica, Z., Biondi, B., & Ellsworth, W. L. (2019). Seismic velocity estimation using passive downhole distributed acoustic sensing records: Examples from the San Andreas fault observatory at depth. Journal of Geophysical Research: Solid Earth, 124(7), 6931-6948.
Chen, Y., Savvaidis, A., Chen, Y., Saad, O. M., & Fomel, S. (2023). Enhancing earthquake detection from distributed acoustic sensing data by coherency measure and moving-rank-reduction filtering. Geophysics, 88(6), 1-40.
Origin and flow of heat and fluids along the fault
Williams, C. F., Grubb, F. V., and Galanis, S. P. (2004), Heat flow in the SAFOD pilot hole and implications for the strength of the San Andreas Fault, Geophys. Res. Lett., 31, L15S14, doi:10.1029/2003GL019352.
Wiersberg, T., & Erzinger, J. (2007). A helium isotope cross‐section study through the San Andreas Fault at seismogenic depths. Geochemistry, Geophysics, Geosystems, 8(1).
Fulton, P. M., & Saffer, D. M. (2009). Potential role of mantle‐derived fluids in weakening the San Andreas Fault. Journal of Geophysical Research: Solid Earth, 114(B7).
Fulton, P. M., & Saffer, D. M. (2009). Effect of thermal refraction on heat flow near the San Andreas Fault, Parkfield, California. Journal of Geophysical Research: Solid Earth, 114(B6).
Fulton, P. M., Harris, R. N., Saffer, D. M., & Brodsky, E. E. (2010). Does hydrologic circulation mask frictional heat on faults after large earthquakes?. Journal of Geophysical Research: Solid Earth, 115(B9).
Ali, S. (2010). Helium measurements of pore-fluids obtained from SAFOD drillcore.
Becken, M., Ritter, O., Bedrosian, P. A., & Weckmann, U. (2011). Correlation between deep fluids, tremor and creep along the central San Andreas fault. Nature, 480(7375), 87-90.
Mittempergher, S., Di Toro, G., Gratier, J. P., Hadizadeh, J., Smith, S. A., & Spiess, R. (2011). Evidence of transient increases of fluid pressure in SAFOD phase III cores. Geophysical Research Letters, 38(3).
Pili, E., Kennedy, B. M., Conrad, M. E., & Gratier, J. P. (2011). Isotopic evidence for the infiltration of mantle and metamorphic CO2–H2O fluids from below in faulted rocks from the San Andreas Fault system. Chemical Geology, 281(3-4), 242-252.
Ali, S., Stute, M., Torgersen, T., Winckler, G., & Kennedy, B. M. (2011). Helium measurements of pore fluids obtained from the San Andreas Fault Observatory at Depth (SAFOD, USA) drill cores. Hydrogeology Journal, 19(1), 237.
Popek, M. A., & Saffer, D. M. (2011). Heat advection by groundwater flow through a heterogeneous permeability crust: A potential cause of scatter in surface heat flow near Parkfield, California. Journal of Geophysical Research: Solid Earth, 116(B3).
Deeds, D. A., Kulongoski, J. T., Mühle, J., & Weiss, R. F. (2015). Tectonic activity as a significant source of crustal tetrafluoromethane emissions to the atmosphere: Observations in groundwaters along the San Andreas Fault. Earth and Planetary Science Letters, 412, 163-172.
Calvin, W. M., & Pace, E. L. (2016). Mapping alteration in geothermal drill core using a field portable spectroradiometer. Geothermics, 61, 12-23.
Moore, D. E., Lockner, D. A., & Hickman, S. (2016). Hydrothermal frictional strengths of rock and mineral samples relevant to the creeping section of the San Andreas Fault. Journal of Structural Geology, 89, 153-167.
Luetkemeyer, P. B., Kirschner, D. L., Huntington, K. W., Chester, J. S., Chester, F. M., & Evans, J. P. (2016). Constraints on paleofluid sources using the clumped-isotope thermometry of carbonate veins from the SAFOD (San Andreas Fault Observatory at Depth) borehole. Tectonophysics, 690, 174-189.
Janssen, C., Wirth, R., Reinicke, A., Rybacki, E., Naumann, R., Wenk, H. R., & Dresen, G. (2011). Nanoscale porosity in SAFOD core samples (San Andreas Fault). Earth and Planetary Science Letters, 301(1-2), 179-189.
Wiersberg, T., & Erzinger, J. (2011). Chemical and isotope compositions of drilling mud gas from the San Andreas Fault Observatory at Depth (SAFOD) boreholes: Implications on gas migration and the permeability structure of the San Andreas Fault. Chemical Geology, 284(1-2), 148-159.
Wiersberg, T., & Erzinger, J. (2008). Origin and spatial distribution of gas at seismogenic depths of the San Andreas Fault from drill-mud gas analysis. Applied Geochemistry, 23(6), 1675-1690.
Wang, C. Y. (2011). High pore pressure, or its absence, in the San Andreas Fault. Geology, 39(11), 1047-1050.
Johri, M., Zoback, M. D., & Hennings, P. (2011, June). Observations of fault damage zones at reservoir depths. In 45th US Rock Mechanics/Geomechanics Symposium. OnePetro.
Morrow, C. A., Lockner, D. A., Moore, D. E., & Hickman, S. (2014). Deep permeability of the San Andreas fault from San Andreas fault observatory at depth (SAFOD) core samples. Journal of Structural Geology, 64, 99-114.
Morrow, C., Lockner, D. A., & Hickman, S. (2015). Low resistivity and permeability in actively deforming shear zones on the San Andreas Fault at SAFOD. Journal of Geophysical Research: Solid Earth, 120(12), 8240-8258.
Khoshmanesh, M., & Shirzaei, M. (2018). Episodic creep events on the San Andreas Fault caused by pore pressure variations. Nature geoscience, 11(8), 610-614.
Structure of core materials and implications for fault creep
Solum, J. G., and van der Pluijm, B. A. (2004), Phyllosilicate mineral assemblages of the SAFOD Pilot Hole and comparison with an exhumed segment of the San Andreas Fault System, Geophys. Res. Lett., 31, L15S19, doi:10.1029/2004GL019909.
Hickman, S. H. (2005), Structure and Composition of the San Andreas fault zone at Parkfield: Initial results from SAFOD Phase 1 and 2, EOS, 83 (47), 237.
Almeida, R., Chester, J., Chester, F., Waller, T., Kirschner, D., & Moore, D. (2005). Lithology and structure of SAFOD Phase I core samples. EOS, Transactions of the American Geophysical Union, 86, T21A-0454.
Solum, J. G., Hickman, S. H., Lockner, D. A., Moore, D. E., van der Pluijm, B. A., Schleicher, A. M., & Evans, J. P. (2006). Mineralogical characterization of protolith and fault rocks from the SAFOD main hole. Geophysical Research Letters, 33(21).
Schleicher, A. M., van der Pluijm, B. A., Solum, J. G., & Warr, L. N. (2006). Origin and significance of clay‐coated fractures in mudrock fragments of the SAFOD borehole (Parkfield, California). Geophysical Research Letters, 33(16).
Zoback, M., Hickman, S., & Ellsworth, W. (2006). Structure and properties of the San Andreas fault in central California: Preliminary results from the SAFOD experiment. In Geophys. Res. Abstr (Vol. 8, p. 02474).
Schleicher, A. M., Van der Pluijm, B. A., Solum, J. G., & Warr, L. N. (2006). The origin and significance of clay minerals on surfaces, in fractures and in veins from SAFOD borehole samples (Parkfield, California). Geophysical Research Letters, 33, L16313.
Moore, D. E., & Rymer, M. J. (2007). Talc-bearing serpentinite and the creeping section of the San Andreas fault. Nature, 448(7155), 795-797.
Bradbury, K. K., Barton, D. C., Solum, J. G., Draper, S. D., & Evans, J. P. (2007). Mineralogic and textural analyses of drill cuttings from the San Andreas Fault Observatory at Depth (SAFOD) boreholes: Initial interpretations of fault zone composition and constraints on geologic models. Geosphere, 3(5), 299-318.
Solum, J. G., Hickman, S., Lockner, D. A., Tembe, S., Evans, J. P., Draper, S. D., ... & Wong, T. F. (2007). San Andreas Fault zone mineralogy, geochemistry, and physical properties from SAFOD cuttings and core.
Schleicher, A. M., Van der Pluijm, B. A., Warr, L. N., & Solum, J. G. (2007). Electron microscopy of clay minerals in mudrocks from the San Andreas Fault Observatory at Depth (SAFOD). Scientific Drilling, 68-70.
Hadizadeh, J., Babaie, H. A., DiToro, G., & Mair, K. (2007). What is the role of minor gouge zones in the damage zone of the SAF system. In Proceedings 3rd Annual Earth Scope National Meeting, Monterey, CA.
Schleicher, A. M., Tourscher, S. N., van der Pluijm, B. A., & Warr, L. N. (2009). Constraints on mineralization, fluid‐rock interaction, and mass transfer during faulting at 2–3 km depth from the SAFOD drill hole. Journal of Geophysical Research: Solid Earth, 114(B4).
Schleicher, A. M., Warr, L. N., & Van Der Pluijm, B. A. (2009). On the origin of mixed-layered clay minerals from the San Andreas Fault at 2.5–3 km vertical depth (SAFOD drillhole at Parkfield, California). Contributions to Mineralogy and Petrology, 157, 173-187.
Springer, S. D., Evans, J. P., Garver, J. I., Kirschner, D., & Janecke, S. U. (2009). Arkosic rocks from the San Andreas Fault Observatory at Depth (SAFOD) borehole, central California: Implications for the structure and tectonics of the San Andreas fault zone. Lithosphere, 1(4), 206-226.
Schleicher, A. M., van der Pluijm, B. A., & Warr, L. N. (2010). Nanocoatings of clay and creep of the San Andreas fault at Parkfield, California. Geology, 38(7), 667-670.
Wenk, H. R., Kanitpanyacharoen, W., & Voltolini, M. (2010). Preferred orientation of phyllosilicates: Comparison of fault gouge, shale and schist. Journal of structural geology, 32(4), 478-489.
Jeppson, T. N., Bradbury, K. K., & Evans, J. P. (2010). Geophysical properties within the San Andreas Fault Zone at the San Andreas Fault Observatory at Depth and their relationships to rock properties and fault zone structure. Journal of Geophysical Research: Solid Earth, 115(B12).
Janssen, C., Wirth, R., Rybacki, E., Naumann, R., Kemnitz, H., Wenk, H. R., & Dresen, G. (2010). Amorphous material in SAFOD core samples (San Andreas Fault): Evidence for crush‐origin pseudotachylytes?. Geophysical research letters, 37(1).
Bradbury, K. K., Evans, J. P., Chester, J. S., Chester, F. M., & Kirschner, D. L. (2011). Lithology and internal structure of the San Andreas fault at depth based on characterization of Phase 3 whole-rock core in the San Andreas Fault Observatory at Depth (SAFOD) borehole. Earth and Planetary Science Letters, 310(1-2), 131-144.
Wenk, H. R., Janssen, C., Kenkmann, T., & Dresen, G. (2011). Mechanical twinning in quartz: shock experiments, impact, pseudotachylites and fault breccias. Tectonophysics, 510(1-2), 69-79.
Rybacki, E., Janssen, C., Wirth, R., Chen, K., Wenk, H. R., Stromeyer, D., & Dresen, G. (2011). Low-temperature deformation in calcite veins of SAFOD core samples (San Andreas Fault)—Microstructural analysis and implications for fault rheology. Tectonophysics, 509(1-2), 107-119.
White, J. C. (2011). Micro-mechanical processes from the San Andreas Fault Observatory at Depth (SAFOD) Phase 3 cores.
Schleicher, A. M., Van Der Pluijm, B. A., & Warr, L. N. (2012). Chlorite-smectite clay minerals and fault behavior: New evidence from the San Andreas Fault Observatory at Depth (SAFOD) core. Lithosphere, 4(3), 209-220.
Janssen, C., Kanitpanyacharoen, W., Wenk, H. R., Wirth, R., Morales, L., Rybacki, E., ... & Dresen, G. (2012). Clay fabrics in SAFOD core samples. Journal of Structural Geology, 43, 118-127.
Moore, D. E., & Rymer, M. J. (2012). Correlation of clayey gouge in a surface exposure of the San Andreas fault with gouge at depth from SAFOD: Implications for the role of serpentinite in fault mechanics. Journal of Structural Geology, 38, 51-60.
Bradbury, K. K. (2012). Rock properties and structure within the San Andreas fault observatory at depth (SAFOD) borehole northwest of Parkfield, California: in situ observations of rock deformation processes and fluid-rock interactions of the San Andreas fault zone at~ 3 km depth. Utah State University.
Schleicher, A. M., Hofmann, H., & van der Pluijm, B. A. (2013). Constraining clay hydration state and its role in active fault systems. Geochemistry, Geophysics, Geosystems, 14(4), 1039-1052.
Richard, J., Gratier, J. P., Doan, M. L., Boullier, A. M., & Renard, F. (2014). Rock and mineral transformations in a fault zone leading to permanent creep: Interactions between brittle and viscous mechanisms in the San Andreas Fault. Journal of Geophysical Research: Solid Earth, 119(11), 8132-8153.
Janssen, C., Wirth, R., Wenk, H. R., Morales, L., Naumann, R., Kienast, M., ... & Dresen, G. (2014). Faulting processes in active faults–evidences from TCDP and SAFOD drill core samples. Journal of Structural Geology, 65, 100-116.
Warr, L. N., Wojatschke, J., Carpenter, B. M., Marone, C., Schleicher, A. M., & van der Pluijm, B. A. (2014). A “slice-and-view”(FIB–SEM) study of clay gouge from the SAFOD creeping section of the San Andreas Fault at∼ 2.7 km depth. Journal of Structural Geology, 69, 234-244.
Coble, C. G., French, M. E., Chester, F. M., Chester, J. S., & Kitajima, H. (2014). In situ frictional properties of San Andreas Fault gouge at SAFOD. Geophysical Journal International, 199(2), 956-967.
Moore, D. E. (2014). Comparative mineral chemistry and textures of SAFOD fault gouge and damage-zone rocks. Journal of Structural Geology, 68, 82-96.
Bradbury, K. K., Davis, C. R., Shervais, J. W., Janecke, S. U., & Evans, J. P. (2015). Composition, alteration, and texture of fault-related rocks from SAFOD core and surface outcrop analogs: Evidence for deformation processes and fluid-rock interactions. Pure and Applied Geophysics, 172, 1053-1078.
Lee, R. M. (2015). Correlations of Fault Rock Constitutive Properties Derived from Laboratory Retrieved Data of the North-Eastern Block of the Southern San Andreas Fault, Mecca Hills, CA via Computational Analysis.
Schulz, H. M., Wirth, R., & Schreiber, A. (2016). Nano-crystal formation of TiO2 polymorphs brookite and anatase due to organic—inorganic rock–fluid interactions. Journal of Sedimentary Research, 86(2), 59-72.
Moore, D. E., McLaughlin, R. J., & Lienkaemper, J. J. (2018). Serpentinite‐rich gouge in a creeping segment of the Bartlett Springs Fault, northern California: Comparison with SAFOD and implications for seismic hazard. Tectonics, 37(12), 4515-4534.
Hadizadeh, J., & Boyle, A. P. (2018). A study of secondary pyrite deformation and calcite veins in SAFOD damage zone with implications for aseismic creep deformation mechanism at depths> 3 km. Journal of Structural Geology, 117, 14-26.
Perrin, C., Waldhauser, F., Choi, E., & Scholz, C. H. (2019). Persistent fine-scale fault structure and rupture development: A new twist in the Parkfield, California, story. Earth and Planetary Science Letters, 521, 128-138.
Bryan, J. (2020). Clustering and Classifying Geophysical Rock Properties of the San Andreas Fault.
Moore, D. E., & Bradbury, K. K. (2023). Chemical characterization of San Andreas Fault Observatory at Depth (SAFOD) Phase 3 core (No. 2023-1019). US Geological Survey.
Frictional properties and behavior related to fault strength
Tembe, S., Lockner, D. A., Solum, J. G., Morrow, C. A., Wong, T. F., & Moore, D. E. (2006). Frictional strength of cuttings and core from SAFOD drillhole phases 1 and 2. Geophysical Research Letters, 33(23).
Ikari, M. J., Saffer, D. M., & Marone, C. (2007). Effect of hydration state on the frictional properties of montmorillonite‐based fault gouge. Journal of Geophysical Research: Solid Earth, 112(B6).
Morrow, C., Solum, J., Tembe, S., Lockner, D., & Wong, T. F. (2007). Using drill cutting separates to estimate the strength of narrow shear zones at SAFOD. Geophysical Research Letters, 34(11).
Brantut, N., Schubnel, A., Rouzaud, J. N., Brunet, F., & Shimamoto, T. (2008). High‐velocity frictional properties of a clay‐bearing fault gouge and implications for earthquake mechanics. Journal of Geophysical Research: Solid Earth, 113(B10).
Imber, J., Holdsworth, R. E., Smith, S. A. F., Jefferies, S. P., & Collettini, C. (2008). Frictional-viscous flow, seismicity and the geology of weak faults: a review and future directions. Geological Society, London, Special Publications, 299(1), 151-173.
Carpenter, B. M., Marone, C., & Saffer, D. M. (2009). Frictional behavior of materials in the 3D SAFOD volume. Geophysical Research Letters, 36(5).
Lockner, D. A., Morrow, C., Moore, D., & Hickman, S. (2011). Low strength of deep San Andreas fault gouge from SAFOD core. Nature, 472(7341), 82-85.
Ikari, M. J., Marone, C., & Saffer, D. M. (2011). On the relation between fault strength and frictional stability. Geology, 39(1), 83-86.
Carpenter, B. M., Marone, C., & Saffer, D. M. (2011). Weakness of the San Andreas Fault revealed by samples from the active fault zone. Nature Geoscience, 4(4), 251-254.
Singh, M., Raj, A., & Singh, B. (2011). Modified Mohr–Coulomb criterion for non-linear triaxial and polyaxial strength of intact rocks. International Journal of Rock Mechanics and Mining Sciences, 48(4), 546-555.
Holdsworth, R. E., Van Diggelen, E. W. E., Spiers, C. J., De Bresser, J. H. P., Walker, R. J., & Bowen, L. (2011). Fault rocks from the SAFOD core samples: implications for weakening at shallow depths along the San Andreas Fault, California. Journal of Structural Geology, 33(2), 132-144.
Ikari, M. J., Niemeijer, A. R., & Marone, C. (2011). The role of fault zone fabric and lithification state on frictional strength, constitutive behavior, and deformation microstructure. Journal of Geophysical Research: Solid Earth, 116(B8).
Lee, H., & Haimson, B. C. (2011). True triaxial strength, deformability, and brittle failure of granodiorite from the San Andreas Fault Observatory at Depth. International Journal of Rock Mechanics and Mining Sciences, 48(7), 1199-1207.
Haimson, B. (2011). Consistent trends in the true triaxial strength and deformability of cores extracted from ICDP deep scientific holes on three continents. Tectonophysics, 503(1-2), 45-51.
Carpenter, B. M., Saffer, D. M., & Marone, C. (2012). Frictional properties and sliding stability of the San Andreas fault from deep drill core. Geology, 40(8), 759-762.
Hadizadeh, J., Mittempergher, S., Gratier, J. P., Renard, F., Di Toro, G., Richard, J., & Babaie, H. A. (2012). A microstructural study of fault rocks from the SAFOD: Implications for the deformation mechanisms and strength of the creeping segment of the San Andreas Fault. Journal of Structural Geology, 42, 246-260.
Moore, D. E., & Lockner, D. A. (2013). Chemical controls on fault behavior: Weakening of serpentinite sheared against quartz‐bearing rocks and its significance for fault creep in the San Andreas system. Journal of Geophysical Research: Solid Earth, 118(5), 2558-2570.
Chang, S. H., Avouac, J. P., Barbot, S., & Lee, J. C. (2013). Spatially variable fault friction derived from dynamic modeling of aseismic afterslip due to the 2004 Parkfield earthquake. Journal of Geophysical Research: Solid Earth, 118(7), 3431-3447.
French, M. E., Kitajima, H., Chester, J. S., Chester, F. M., & Hirose, T. (2014). Displacement and dynamic weakening processes in smectite‐rich gouge from the Central Deforming Zone of the San Andreas Fault. Journal of Geophysical Research: Solid Earth, 119(3), 1777-1802.
Carpenter, B. M., Saffer, D. M., & Marone, C. (2015). Frictional properties of the active San Andreas Fault at SAFOD: Implications for fault strength and slip behavior. Journal of Geophysical Research: Solid Earth, 120(7), 5273-5289.
French, M. E., Chester, F. M., & Chester, J. S. (2015). Micromechanisms of creep in clay‐rich gouge from the Central Deforming Zone of the San Andreas Fault. Journal of Geophysical Research: Solid Earth, 120(2), 827-849.
Carpenter, B. M., Ikari, M. J., & Marone, C. (2016). Laboratory observations of time‐dependent frictional strengthening and stress relaxation in natural and synthetic fault gouges. Journal of Geophysical Research: Solid Earth, 121(2), 1183-1201.
Ikari, M. J., Carpenter, B. M., Vogt, C., & Kopf, A. J. (2016). Elevated time-dependent strengthening rates observed in San Andreas Fault drilling samples. Earth and Planetary Science Letters, 450, 164-172.
Wojatschke, J., Scuderi, M. M., Warr, L. N., Carpenter, B. M., Saffer, D., & Marone, C. (2016). Experimental constraints on the relationship between clay abundance, clay fabric, and frictional behavior for the Central Deforming Zone of the San Andreas Fault. Geochemistry, Geophysics, Geosystems, 17(10), 3865-3881.
Kaneko, Y., Carpenter, B. M., & Nielsen, S. B. (2017). Nucleation process of magnitude 2 repeating earthquakes on the San Andreas Fault predicted by rate‐and‐state fault models with SAFOD drill core data. Geophysical research letters, 44(1), 162-173.
Phillips, N. J., & White, J. C. (2017). Grain size‐dependent strength of phyllosilicate‐rich gouges in the shallow crust: Insights from the SAFOD site. Journal of Geophysical Research: Solid Earth, 122(7), 5789-5812.
Bürgmann, R. (2018). The geophysics, geology and mechanics of slow fault slip. Earth and Planetary Science Letters, 495, 112-134.
Wang, L. (2018). The next M~ 6 event in parkfield implied by a physical model linking interseismic, coseismic, and postseismic phase. Journal of Geophysical Research: Solid Earth, 123(10), 8858-8873.
Ikari, M. J. (2019). Laboratory slow slip events in natural geological materials. Geophysical Journal International, 218(1), 354-387.
Cai, W., Zhu, H., Liang, W., Zhang, L., & Wu, W. (2021). A new version of the generalized Zhang–Zhu strength criterion and a discussion on its smoothness and convexity. Rock Mechanics and Rock Engineering, 54, 4265-4281.
Scuderi, M. M., & Carpenter, B. M. (2022). Frictional stability and hydromechanical coupling of serpentinite-bearing fault gouge. Geophysical Journal International, 231(1), 290-305.
Thermochronological and geochronological investigations
Blythe, A. E., d'Alessio, M. A., and Bürgmann, R. (2004), Constraining the exhumation and burial history of the SAFOD pilot hole with apatite fission track and (U-Th)/He thermochronometry, Geophys. Res. Lett., 31, L15S16, doi:10.1029/2003GL019407.
d'Alessio, M. A., & Williams, C. F. (2007). Putting it all together: Exhumation histories from a formal combination of heat flow and a suite of thermochronometers. Journal of Geophysical Research: Solid Earth, 112(B8).
Spencer, J. Q., Hadizadeh, J., Gratier, J. P., & Doan, M. L. (2012). Dating deep? Luminescence studies of fault gouge from the San Andreas Fault zone 2.6 km beneath Earth's surface. Quaternary Geochronology, 10, 280-284.
Coffey, G. L., Savage, H. M., Polissar, P. J., Cox, S. E., Hemming, S. R., Winckler, G., & Bradbury, K. K. (2022). History of earthquakes along the creeping section of the San Andreas fault, California, USA. Geology, 50(4), 516-521.