Social Relationship Descriptor
Group Decision Strategies
Expertise Descriptor
Dissimilarity Descriptor
Sparseness in Data
Social Relationship Descriptor = IOU of Group Items
Group Decision Strategies: Select Maximum Satisfaction / Average Satisfaction/ Minimum Misery (based on Social Relationship Descriptor)
Expertise Descriptor = Weight assignment based on the highest number of movies watched by a group member
Dissimilarity Descriptor = Dissimilarity based on Average Pairwise Dissimilarity (APD) or Variance Dissimilarity (VD)
Sparseness in Data = Matrix Factorization Experiments
Formulae
Group Decision Strategy: Maximum Satisfaction
Group Decision Strategy: Average Satisfaction
Group Decision Strategy: Minimum Misery
Where,
Social Relationship Descriptor
Expertise Descriptor
Dissimilarity Descriptor:
Average Pairwise Descriptor (APD)
Dissimilarity Descriptor:
Variance Descriptor (VD)
Sparseness Descriptor:
Default MF using the Exponential Decay Learning Rate Scheduler.
Default MF using the Exponential Decay Learning Rate Scheduler with steps.
Baseline-included MF using the Exponential Decay Learning Rate Scheduler.
Baseline-included MF using the Exponential Decay Learning Rate Scheduler. with steps
Default MF refers to:
Error calculation at Gradient Descent=(p_u.q_i - r_u,i)
where
p_u= User Latent Factor
q_i= Item Latent Factor
r_u,i= Training matrix rating for user u and item i
Baseline Included MF refers to:
b_u,i= U + b_u + b_i
Error calculation at Gradient Descent=(b_u,i + p_u.q_i - r_u,i)
where
b_u,i= Baseline Estimate
U= Overall mean rating for all items
b_u= Rating deviation for user u=Average rating of user u - U
b_i= Rating deviation for item i=Average rating of item i - U
p_u= User Latent Factor
q_i= Item Latent Factor
r_u,i= Training matrix rating for user u and item i
Explanation of the Flags:
Social_descriptor_enable=False #0
Social_assumption_similar=(Social_descriptor_enable==False) and False #max satisfaction #1
Social_assumption_diverse=(Social_descriptor_enable==False) and False #avg satisfaction #2
Social_assumption_dissimilar=(Social_descriptor_enable==False) and True #min misery #3
Expertise_descriptor_enable=True #4
Dissimilarity_enable=True #5
Dissimilarity_APD_enable=Dissimilarity_enable and False #6
Dissimilarity_VD_enable=Dissimilarity_enable and True #7
Dissimilarity_Jaccard_enable=Dissimilarity_enable and False #8
Dissimilarity_Pearson_enable=Dissimilarity_enable and False #9
Flags=[Social_descriptor_enable (0)
,Social_assumption_similar(1)
,Social_assumption_diverse(2)
,Social_assumption_dissimilar(3)
,Expertise_descriptor_enable(4)
,Dissimilarity_enable(5)
,Dissimilarity_APD_enable(6)
,Dissimilarity_VD_enable(7)
,Dissimilarity_Jaccard_enable(8)
,Dissimilarity_Pearson_enable(9)]
Valid Combinations:
-------------------------------------------------------------------------------------------------------------------------------------------------------
Base cases: Social Relationship + Group Decision Strategies + Expertise + APD
Flags=[1,0,0,0,1,1,1,0,0,0] #estimated social
Flags=[0,1,0,0,1,1,1,0,0,0] #max satisfaction
Flags=[0,0,1,0,1,1,1,0,0,0] #avg satisfaction
Flags=[0,0,0,1,1,1,1,0,0,0] #min misery
-------------------------------------------------------------------------------------------------------------------------------------------------------
No Expertise + No Dissimilarity
Flags=[1,0,0,0,0,0,0,0,0,0]
Flags=[0,1,0,0,0,0,0,0,0,0]
Flags=[0,0,1,0,0,0,0,0,0,0]
Flags=[0,0,0,1,0,0,0,0,0,0]
-------------------------------------------------------------------------------------------------------------------------------------------------------
No Expertise + APD
Flags=[1,0,0,0,0,1,1,0,0,0]
Flags=[0,1,0,0,0,1,1,0,0,0]
Flags=[0,0,1,0,0,1,1,0,0,0]
Flags=[0,0,0,1,0,1,1,0,0,0]
-------------------------------------------------------------------------------------------------------------------------------------------------------
Expertise + VD
Flags=[1,0,0,0,1,1,0,1,0,0]
Flags=[0,1,0,0,1,1,0,1,0,0]
Flags=[0,0,1,0,1,1,0,1,0,0]
Flags=[0,0,0,1,1,1,0,1,0,0]
-------------------------------------------------------------------------------------------------------------------------------------------------------
No Expertise + VD
Flags=[1,0,0,0,0,1,0,1,0,0]
Flags=[0,1,0,0,0,1,0,1,0,0]
Flags=[0,0,1,0,0,1,0,1,0,0]
Flags=[0,0,0,1,0,1,0,1,0,0]
-------------------------------------------------------------------------------------------------------------------------------------------------------