Publications

Google scholar  (Citations: 7544 | h-index: 48 | i10-index: 86  as of June 2024)

Manuscripts in preparation & in press


Lee, S.-H., S.-H. Park, D. Kim, and M.-T. Chien: Analyzing the growth mechanism of Convectively Coupled Kelvin Waves (CCKWs) with different cumulus parameterizations in WRF simulation, In preparation.

Zhan, R., J. Zhao, Y. Wang, D. Kim, J.-S. Kug, C. Liu, and Y. Gao: Does intraseasonal variability dominate uncertainty in simulating seasonal tropical cyclone activity over the Northwest Pacific?, In preparation.

Lee, J., S.-Y. Wang, S.-W. Son, D. Kim, J.-H. Jeong, H. Kim, J.-H. Yoon: Mechanisms driving the amplification of Northern Hemisphere winter stationary waves and linkage with regional hydroclimate in a warming world, In preparation.

Chien, M.-T., and D. Kim*: Maintenance of Convectively Coupled Kelvin Waves: Relative Importance of Internal Thermodynamic Feedback and External Momentum Forcing, In preparation

Starr, J. C., A. A. Wing, S. J. Camargo, D. Kim, T.-Y. Lee, and J. Moon: Using the moist static energy variance budget to evaluate tropical cyclones in climate models against reanalyses and satellite observations, J. Climate, Submitted.

Paik, S., D. Kim*, S.-I. An, H. Oh, J. Shin, B. B. Goswami,and S. K. Mondal: Hysteresis of sub-seasonal to daily Indian summer monsoon precipitation to carbon dioxide removal, npj Clim. & Atmos. Sci., Submitted.

Wright, C. J., J. A. Thortnton, L. Jaegle, Y. Cao, Z. Yannian, L. Jihu, R. Jones, R. H. Holzworth, D. Rosenfield, R. Wood, D. Kim: Lightning declines over shipping lanes following regulation of fuel sulfur emissions, PNAS, Submitted.

Moon. J., D. Kim*, A. A. Wing, S. J. Camargo, J. C. Starr, and D.-H. Cha: Tropical Cyclone Seed Disturbances in ERA5, J. Climate, Submitted.

Dasgupta, P., S. Nam, M. K. Roxy, P. AG, S. JS, C. Zhang, J. Ling, and D. Kim: Madden-Julian Oscillation moves faster as the meridional moisture gradient intensifies in a warming world, Geophy. Res. Lett., Submitted.

Chien, M.-T., and D. Kim*, Response of convectively coupled Kelvin waves to surface temperature forcing in aquaplanet simulations, J. Adv. Model. Earth Syst., In revision.

García-Franco, J. L., C.-Y. Lee, S. J. Camargo, M. K. Tippett, G. N. Emlaw, D. Kim, Y.-K. Lim, and A. Molod: Tropical cyclones in the GEOS S2S v2 subseasonal forecasts, Mon. Wea. Rev., Revised.

Huang, Y., X. Shi, and D. Kim: The Role of Cloud-Radiative Interaction in Tropical Circulation and the Madden-Julian Oscillation, J. Climate, Accepted.

Back, S.-Y., D. Kim*, and S.-W. Son*: MJO diversity in CMIP6 models, J. Climate, Accepted.

Suematsu, T., Z. K. Martin, E. A. Barnes, C. A. DeMott, S. Hagos, Y.-G. Ham, D. Kim, H. Kim, T.-Y. Koh, E. D. Maloney: Incorrect computation of Madden-Julian oscillation prediction skill, npj Clim. & Atmos. Sci., Accepted.

Published journal papers

[120] Emlaw, G. N., and D. Kim*: The Role of Precursor Disturbances on the Modulation of Western Pacific Tropical Cyclogenesis by the Madden-Julian Oscillation, Geophy. Res. Lett., 51, e2023GL108102. https://doi.org/10.1029/2023GL108102

[119] Im, N., D. Kim*, S.-I. An*, S. Paik, S.-K. Kim, J. Shin, S.-K. Min, J.-S. Kug, and H. Oh, 2024: Hysteresis of European Summer Precipitation under a Symmetric CO2 Ramp-up and Ramp-down Pathway, Environ. Res. Lett., 19, 074030. https://doi.org/10.1088/1748-9326/ad52ad

[118] Zhao, J., R. Zhan, D. Kim, J.-S. Kug, J. Long, L. Zhang, and X. Ma, 2024: Distinct Modulations of Northwest Pacific Tropical Cyclone Precipitation by Atlantic Multidecadal Oscillation and Interdecadal Pacific Oscillation, Geophy. Res. Lett., 51, e2023GL107749. https://doi.org/10.1029/2023GL107749

[117] Lee, J., P. J. Gleckler, M.-S. Ahn, A, Ordonez, P. A. Ullrich, K. R. Sperber, K. E. Taylor, Y. Y. Planton, E. Guilyardi, P. Durack, C. Bonfils, M. D. Zelinka, L.-W. Chao, B. Dong, C. Doutriaux, C. Zhang, T. Vo, J. Boutte, M. F. Wehner, A. G. Pendergrass, D. Kim, Z. Xue, A. T. Wittenberg, J. Krasting, 2024.: Systematic and objective evaluation of Earth system models: PCMDI Metrics Package (PMP) version 3, Geosci. Model Dev., 17, 3919–3948, https://doi.org/10.5194/gmd-17-3919-2024

[116] Cheng, W.-Y., D. Kim*, S. Henderson, Y.-G. Ham, J.-H. Kim, and R. Holzworth, 2024: Machine learning-based lightning parameterizations for CONUS, Artif. Intell. Earth Syst., 3, e230052, https://doi.org/10.1175/AIES-D-23-0052.1

[115] Kim, J.-H., Y.-G. Ham, D. Kim, T. Li, and C. Ma, 2024: Deep learning model for short-term forecasts of tropical cyclone intensity and their rapid intensification, Artif. Intell. Earth Syst., 3, 3, e230052, https://doi.org/10.1175/AIES-D-23-0052.1

[114] Lee, J., S.-Y. Wang, S.-W. Son, D. Kim, J.-H. Jeong, H. Kim, J.-H. Yoon, 2024: Evolving winter atmospheric teleconnection patterns and their potential triggers across western North America, npj Clim. & Atmos. Sci., 7, 63. https://doi.org/10.1038/s41612-024-00608-2

[113] Shin, N.-Y, D. Kim*, D. Kang, and J.-S. Kug, 2024: Data-driven investigation of the source of MJO predictability, npj Clim. & Atmos. Sci. 7, 11. https://doi.org/10.1038/s41612-023-00561-6

[112] Paik, S., D. Kim*, S.-I. An, and Y.-G. Ham, 2023: Constraining the first ice-free Arctic year: Importance of regional perspective, Earth's Future, 11, e2022EF003313. https://doi.org/10.1029/2022EF003313

[111] García-Franco, J. L., C.-Y. Lee, S. J. Camargo, M. K. Tippett, D. Kim, A. Molod, and Y.-K. Lim, 2023: Climatology of Tropical Cyclone Precipitation in the S2S Models, Wea. Forecasting, 38, 1759–1776, https://doi.org/10.1175/WAF-D-23-0029.1.

[110] Ham, Y.-G., J.-H. Kim, S.-K. Min, D. Kim, T. Li, A. Timmermann, and M. Stuecker, 2023: Anthropogenic fingerprints in daily precipitation revealed by deep learning, Nature, 622, 301–307. https://doi.org/10.1038/s41586-023-06474-x

[109] An, S.-I., H.-J. Park, W. Cai, A. Santoso, D. Kim, J.-S. Kug, and S.-K. Kim, 2023: Main drivers of Indian Ocean dipole asymmetry revealed by a simple IOD model, npj Clim. & Atmos. Sci., 6, 93. https://doi.org/10.1038/s41612-023-00422-2

[108] Dirkes, C.A., A.A. Wing, S.J. Camargo, and D. Kim, 2023: Process-oriented diagnosis of tropical cyclones in reanalyses using moist static energy budgets. J. Climate, 36, 5293–5317. https://doi.org/10.1175/JCLI-D-22-0384.1

[107] Jeon, J.-G., S.-W. Yeh, S.-Y. Song, B. P. Kirtman, and D. Kim, 2023: Contrasting trends in convective and large-scale precipitation in the Intertropical Convergence Zone from reanalysis datasets, J. Geophys. Res. Atmos., 128, e2022JD037973. https://doi.org/10.1029/2022JD037973 

[106] Jin, D., D. Kim*, S.-W. Son, and L. Oreopoulos, 2023: QBO deepens MJO convection, Nat. Commun., 14, 4088. https://doi.org/10.1038/s41467-023-39465-7

[105] Rushley*, S., D. Kang, D. Kim*, S.-I. An, and T. Wang, 2023: MJO in Different Orbital Regimes: Role of the Mean State in the MJO’s Amplitude during Boreal Winter, J. Climate, 36, 4475–4490. https://doi.org/10.1175/JCLI-D-22-0725.1

[104] Kim, H.-J., S.-I. An, J.-H. Park, M.-K. Sung, D. Kim, Y. Choi, and J.-S. Kim, 2023: North Atlantic Oscillation impact on the Atlantic Meridional Overturning Circulation shaped by the mean state, npj Clim. & Atmos. Sci., 6, 25. https://doi.org/10.1038/s41612-023-00354-x

[103] Park, C. H., J. Choi, S.-W. Son, D. Kim, S.-W. Yeh, and J.-S. Kug, 2023: Sub-Seasonal Variability of ENSO Teleconnections in Western North America and Its Prediction Skill, J. Geophys. Res. Atmos. 128, e2022JD037985. https://doi.org/10.1029/2022JD037985

[102] Chien, M.-T., and D. Kim*, 2023: Representation of the Convectively Coupled Kelvin Waves in Modern Reanalysis Products, J. Atmos. Sci., 80, 397-418. https://doi.org/10.1175/JAS-D-22-0067.1  

[101] Angulo-Umana, P., and D. Kim*, 2023: Mesoscale convective clustering enhances tropical precipitation. Sci Adv, 9, eabo5317. https://doi.org/10.1126/sciadv.abo5317

[100] Kang, D., D. Kim*, S. Rushley, and E. Maloney, 2022: Seasonal locking of the MJO’s southward detouring of Indonesia caused by the Australian monsoon, J. Climate, 35, 4553-4568. https://doi.org/10.1175/JCLI-D-22-0234.1

[99] Moon, Y., D. Kim*, A. A. Wing, S. J. Camargo, M. Zhao, L. R. Leung, M. J. Roberts, D.-H. Cha, and J. Moon, 2022: An evaluation of global climate model-simulated tropical cyclone rainfall structures in the HighResMIP against the satellite observations, J. Climate, 35, 3715-3738. https://doi.org/10.1175/JCLI-D-21-0564.1

[98] Kim*, D., D. Kang*, M.-S. Ahn, C. DeMott, C.-W. Hsu, C. Yoo, L. R. Leung, S. Hagos, and P. J. Rasch, 2022:  The Madden-Julian Oscillation in the Energy Exascale Earth System Model Version 1, J. Adv. Model. Earth Syst., 14, e2021MS002842. https://doi.org/10.1029/2021MS002842

[97] Nazarenko, L. S., N. Tausnev, G. L. Russell, D. Rind, R. L. Miller, G. A. Schmidt, S. E. Bauer, M. Kelley, R. Ruedy, A. S. Ackerman, I. Aleinov, M. Bauer, R. Bleck, V. Canuto, G. Cesana, Y. Cheng, T. L. Clune, B. I. Cook, C. A. Cruz, A. D. Del Genio, G. S. Elsaesser, G. Faluvegi, N. Y. Kiang, D. Kim, A. A. Lacis, A. Leboissetier, A. N. LeGrande, K. K. Lo, J. Marshall, E. E. Matthews, S. McDermid, K. Mezuman, L. T. Murray, V. Oinas, C. Orbe, C. P. García-Pando, J. P. Perlwitz, M. J. Puma, A. Romanou, D. T. Shindell, S. Sun, K. Tsigaridis, G. Tselioudis, E. Weng, J. Wu, M.-S. Yao, 2022: Future climate change under SSP emission scenarios with GISS-E2.1. Journal of Advances in Modeling Earth Systems, 14, e2021MS002871. https://doi.org/10.1029/2021MS002871

[96] Russotto, R., J. Strong, S. Camargo, A. Sobel, G. Elsaesser, M. Kelley, A. Del Genio, Y. Moon, and D. Kim, 2022: Improved representation of tropical cyclones in the NASA GISS-E3 GCM, J. Adv. Model. Earth Syst., 14, e2021MS002601. https://doi.org/10.1029/2021MS002601

[95] Cheng, W.-Y., D. Kim*, R. H. Holzworth, 2021: CAPE Threshold for Lightning over the Tropical Ocean, J. Geophys. Res. Atmos., 126, e2021JD035621. https://doi.org/10.1029/2021JD035621

[94] Kang, D., D. Kim*, M.-S. Ahn, and S.-I. Ahn, 2021: The role of background meridional moisture gradient on the propagation of the MJO over the Maritime Continent, J. Climate, 34, 6565-6581. https://doi.org/10.1175/JCLI-D-20-0085.1

[93] Pak, G., Y. Noh, M.-I. Lee, S.-W. Yeh, D. Kim, S.-Y. Kim, J.-L. Lee, H. J. Lee, S.-H. Hyun, K.-Y. Lee, J.-H. Lee, and Y. H. Kim, 2021: Korea Institute of Ocean Science and Technology Earth System Model and Its Simulation Characteristics. Ocean Sci. J., 56, 18–45. https://doi.org/10.1007/s12601-021-00001-7

[92] Kim*, D., E. D. Maloney, and C. Zhang, 2021: Review: MJO propagation over the Maritime Continent, Chap. 21 in The Multiscale Global Monsoon System, Eds: C.P. Chang, K.J. Ha, R. H. Johnson, D. Kim, G.N. Lau, B. Wang. World Scientific Series on Asia-Pacific Weather and Climate, Vol. 11. World Scientific, Singapore. https://doi.org/10.1142/11723.

[91] Adames, Á. F., D. Kim, E. D. Maloney, and A. H. Sobel, 2021: The moisture mode framework of the Madden-Julian Oscillation, Chap. 22 in The Multiscale Global Monsoon System, Eds: C.P. Chang, K.J. Ha, R. H. Johnson, D. Kim, G.N. Lau, B. Wang. World Scientific Series on Asia-Pacific Weather and Climate, Vol. 11. World Scientific, Singapore. https://doi.org/10.1142/11723

[90] Jiang, X., D. Kim, E. D. Maloney, 2021: Progress and Status of MJO Simulation in Climate Models and Process-Oriented Diagnostics, Chap. 25 in The Multiscale Global Monsoon System, Eds: C.P. Chang, K.J. Ha, R. H. Johnson, D. Kim, G.N. Lau, B. Wang. World Scientific Series on Asia-Pacific Weather and Climate, Vol. 11. World Scientific, Singapore, https://doi.org/10.1142/11723

[89] Lyu, M, X. Jiang, Z. Wu, D. Kim, Á. F. Adames, 2021: Zonal scale of the Madden-Julian Oscillation and its propagation speed on the interannual time scales, Geophy. Res. Lett., 48, e2020GL091239. https://doi.org/10.1029/2020GL091239

[88] Weber, N., D. Kim, and C. Mass, 2021: Convection-Kelvin wave coupling in a global convection-permitting model. J. Atmos. Sci., 78, 1039-1055. https://doi.org/10.1175/JAS-D-20-0243.1

[87] Ren, P., D. Kim*, M.-S. Ahn, D. Kang, and H.-L. Ren, 2021: Intercomparison of MJO column moist static energy and water vapor budget among six modern reanalysis products. J. Clim. 34, 2977–3001. https://doi.org/10.1175/JCLI-D-20-0653.1 

[86]  Kim, H.-J., S.-I. An, and D. Kim, 2021: Timescale-dependent AMOC–AMO relationship in an earth system model of intermediate complexity. Int. J. Climatol., 41, E3298–E3306. https://doi.org/10.1002/joc.6926

[85] Miller, R. L., G. A. Schmidt, L. Nazarenko, S. E. Bauer, R. Ruedy, G. L. Russell, I. Aleinov, M. Bauer, R. Bleck, V. Canuto, G. Cesana, Y. Cheng, T. L. Clune, B. Cook. A. D. Del Genio, G. S. Elsaesser, G. Faluvegi, N. Y. Kiang, D. Kim, A. A. Lacis, A. Leboissetier, A. N. LeGrande, K. K. Lo, J. C. Marshall, S. McDermid, E. E. Matthews, K. Mezuman, L. T. Murray, V. Oinas, C. Orbe, C. P. García-Pando, J. P. Perlwitz, M. J. Puma, D. Rind, A. Romanou, D. T. Shindell, S. Sun, N. Tausnev, K. Tsigaridis, G. Tselioudis, E. Weng, J. Wu, M.-S. Yao, 2021: CMIP6 Historical Simulations (1850-2014) with GISS 2 ModelE2.1, J. Adv. Model. Earth Syst., 13, e2019MS002034. https://doi.org/10.1029/2019MS002034

[84] Kang, D., D. Kim*, M.-S. Ahn, R. Neale, J.-W. Lee, and P. Glecker, 2020:  The role of the mean state on MJO simulation in CESM2 ensemble simulation. Geophy. Res. Lett., 47, e2020GL089824. https://doi.org/10.1029/2020GL089824

[83] Weber, N., C. Mass, D. Kim, 2020: The impacts of horizontal grid spacing and cumulus parameterization on subseasonal prediction in a global convection-permitting model. Mon. Wea. Rev., 148, 4747-4765. https://doi.org/10.1175/MWR-D-20-0171.1

[82] Kim, J.-H., D. Kim, D.-B. Lee, H.-Y. Chun, R. Sharman, P. Williams, Y.-J. Kim, 2020: Impact of Climate Variabilities on Trans-Oceanic Flight Times and Emissions during strong NAO and ENSO phases, Environ. Res. Let., 15, 105017. https://doi.org/10.1088/1748-9326/abaa77

[81] Wing., A. A., et al. (including D. Kim), 2020: Clouds and Convective Self-Aggregation in a Multi-Model Ensemble of Radiative-Convective Equilibrium Simulations. J. Adv. Model. Earth Syst., 12, e2020MS002138. https://doi.org/10.1029/2020MS002138

[80] Jiang, X., Á. F. Adames, D. Kim, E. D. Maloney, H. Lin, H. Kim, C. Zhang, C. A. DeMott, and N. P. Klingaman, 2020: Fifty Years of Research on the Madden-Julian Oscillation: Recent Progress, Challenges, and Perspectives, J. Geophys. Res. Atmos., 125, e2019JD030911.  https://doi.org/10.1029/2019JD030911

[79] Kelley, M., G. A. Schmidt, L. Nazarenko, R. L. Miller, S. E. Bauer, Kelley, M., R. Ruedy, G. L. Russell, I. Aleinov, M. Bauer, R. Bleck, V. Canuto, G. Cesana, Y. Cheng, T. L. Clune, B. Cook. A. D. Del Genio, G. S. Elsaesser, G. Faluvegi, N. Y. Kiang, D. Kim, A. A. Lacis, A. Leboissetier, A. N. LeGrande, K. K. Lo, J. C. Marshall, S. McDermid, E. E. Matthews, K. Mezuman, L. T. Murray, V. Oinas, C. Orbe, C. P. García-Pando, J. P. Perlwitz, M. J. Puma, D. Rind, A. Romanou, D. T. Shindell, S. Sun, N. Tausnev, K. Tsigaridis, G. Tselioudis, E. Weng, J. Wu, M.-S. Yao, 2020: GISS-E2.1: Configurations and Climatology, J. Adv. Model. Earth Syst., 12, e2019MS002025. https://doi.org/10.1029/2019MS002025

[78] Moon, Y., D. Kim*, S. J. Camargo, A. A. Wing, K. A. Reed, M. F. Wehner, and M. Zhao, 2020: A horizontal resolution-dependent wind speed adjustment factor for tropical cyclones in global climate model simulations, Geophy. Res. Lett. 47, e2020GL087528. https://doi.org/10.1029/2020GL087528

[77] Ahn, M.-S., D. Kim*, D. Kang, J. Lee, K. R. Sperber, P. J. Glecker, X. Jiang, Y.-G. Ham, and H. Kim, 2020: MJO Propagation across the Maritime Continent: Are CMIP6 Models Better than CMIP5 Models? Geophy. Res. Lett. 47, e2020GL087250. https://doi.org/10.1029/2020GL087250

[76] Wang, J., H. Kim, D. Kim, S. A. Henderson, C. Stan, and E. D. Maloney, 2020: MJO teleconnections over the PNA region in climate models. Part II: Impacts of the MJO and basic state. J. Climate, 33, 5081–5101, https://doi.org/10.1175/JCLI-D-19-0865.1

[75] Camargo, S. J., C. F. Guilivi, A. H. Sobel, A. A. Wing. D. Kim, Y. Moon, J. D. O. Strong, A. D. Del Genio, M. Kelley, H. Murakami, K. Reed, E. Scoccimarro, G. Vecchi, M. Wehner, C. Zarzycki, and M. Zhao, 2020: Characteristics of model tropical cyclone climatology and the large-scale environment, J. Climate, 33, 4463–4487, https://doi.org/10.1175/JCLI-D-19-0500.1

[74] Cheng, W.-Y., D. Kim*, A. Rowe, Y. Moon, S. Wang, 2020: Mechanisms of convective clustering during the AMIE/DYNAMO 2-day rain episodes, J. Adv. Model. Earth Syst., e2019MS001907. https://doi.org/10.1029/2019MS001907

[73] Ahn, M.-S., D. Kim*, S. Park, and Y.-G. Ham, 2020: Role of Maritime Continent land convection on the mean state and MJO propagation, J. Climate, 33, 1659–1675, https://doi.org/10.1175/JCLI-D-19-0342.1

[72] Moon, Y., D. Kim*, S. Camargo, A. Wing, A. Sobel, H. Murakami, K. Reed, G. Vecchi, M. Wehner, C. Zarzycki, and M. Zhao, 2020: Azimuthally averaged wind and thermodynamic structures of tropical cyclones in global climate models and their sensitivity to horizontal resolution. J. Climate, 33, 1575–1595, https://doi.org/10.1175/JCLI-D-19-0172.1

[71] Wang, J., H. Kim, D. Kim, S. A. Henderson, C. Stan, and E. D. Maloney, 2020: MJO teleconnections over the PNA region in climate models. Part I: Performance- and process-based skill metrics. J. Climate, 33, 1051–1067, https://doi.org/10.1175/JCLI-D-19-0253.1

[70] Adames, Á. F., D. Kim, S. K. Clark, Y. Ming, and K. Inoue, 2019: Scale analysis of moist thermodynamics in a simple model and the relationship between moisture modes and gravity waves, J. Atmos. Sci., 76, 3863–3881, https://doi.org/10.1175/JAS-D-19-0121.1

[69] Roxy, M. K., P. Dasgupta, M. J. McPhaden, T. Suematsu, C. Zhang, and D. Kim, 2019: Twofold expansion of the Indo-Pacific warm pool warps the MJO life cycle, Nature, 575, 647–651, https://doi.org/10.1038/s41586-019-1764-4

[68] Wing, A.A., S.J. Camargo, A.H. Sobel, D. Kim, Y. Moon, H. Murakami, K.A. Reed, G.A. Vecchi, M.F. Wehner, C. Zarzycki, and M. Zhao, 2019: Moist Static Energy Budget Analysis of Tropical Cyclone Intensification in High-Resolution Climate Models. J. Climate, 32, 6071–6095, https://doi.org/10.1175/JCLI-D-18-0599.1

[67] Maloney, E.D., A. Gettelman, Y. Ming, J.D. Neelin, D. Barrie, A. Mariotti, C. Chen, D.R. Coleman, Y. Kuo, B. Singh, H. Annamalai, A. Berg, J.F. Booth, S.J. Camargo, A. Dai, A. Gonzalez, J. Hafner, X. Jiang, X. Jing, D. Kim, A. Kumar, Y. Moon, C.M. Naud, A.H. Sobel, K. Suzuki, F. Wang, J. Wang, A.A. Wing, X. Xu, and M. Zhao, 2019: Process-Oriented Evaluation of Climate and Weather Forecasting Models. Bull. Amer. Meteor. Soc., 100, 1665–1686, https://doi.org/10.1175/BAMS-D-18-0042.1

[66] Seo, E., M.-I. Lee, J.-H. Jeong, R. D. Koster, S. D. Schubert, H.-M. Kim, D. Kim, H.-S. Kang, H.-K. Kim, C. MacLachlan, A. A. Scaife, 2018: Impact of soil moisture initialization on boreal summer subseasonal forecasts: mid-latitude surface air temperature and heat wave events. Clim. Dyn., 51, 1–15, https://doi.org/10.1007/s00382-018-4221-4 

[65] Rushley, S. S., D. Kim*, and Á. F. Adames, 2019: Changes in the MJO under the greenhouse gas-induced warming in CMIP5 models, J. Climate, 32, 803–821, https://doi.org/10.1175/JCLI-D-18-0437.1

[64] Ahn, M.-S., D. Kim*, S. Park, and Y.-G. Ham, 2019: Do we need to parameterize mesoscale convective organization to mitigate the MJO-mean state tradeoff? Geophys. Res. Lett. 46, 2293– 2301, https://doi.org/10.1029/2018GL080314

*A commentary article by Mitchell Moncrieff

[63] Shi, X., D. Kim, Á. F. Adames, and J. Sukhatme, 2018: WISHE-Moisture Mode in an Aquaplanet Simulation. J. Adv. Model. Earth Syst., 10, 2393–2407, https://doi.org/10.1029/2018MS001441

[62] Cheng, W.-Y., D. Kim*, and A. Rowe, 2018: Objective Quantification of Convective Clustering Observed During the AMIE/DYNAMO Two-Day Rain Episodes. J. Geophys. Res. Atmos., 123, 10,361– 10,378, https://doi.org/10.1029/2018JD028497 

[61] Kim, H., M. Lee, D. Kim, H. Kang, and Y. Hyun, 2018: Representation of Boreal Winter MJO and Its Teleconnection in a Dynamical Ensemble Seasonal Prediction System. J. Climate, 31, 8803–8818, https://doi.org/10.1175/JCLI-D-18-0039.1 

[60] Chang, C.-P., R. H. Johnson, K.-J. Ha, D. Kim, G. N. Lau, B. Wang, M. M. Bell, and Y. Luo, 2018: the Multi-Scale Global Monsoon System: Research and Prediction Challenges in Weather and Climate. Bull. Am. Meteorol. Soc., 99, ES149–ES153, https://doi.org/10.1175/BAMS-D-18-0085.1

[59] Burleyson, C. D., S. M. Hagos, Z. Feng, B. W. J. Kerns, and D. Kim, 2018: Large-Scale Environmental Characteristics of MJOs that strengthen and weaken over the maritime continent. J. Climate, 31, 5731-5748, https://doi.org/10.1175/JCLI-D-17-0576.1 

[58] Lim, Y., S.-W. Son, and D. Kim, 2018: MJO prediction skill of the subseasonal-to-seasonal (S2S) models. J. Climate, 31, 4075–4094.

[57] Rushley, S. S., D. Kim*, C. S. Bretherton, and M.-S. Ahn, 2018: Reexamining the Nonlinear Moisture-Precipitation Relationship Over the Tropical Oceans. Geophys. Res. Lett., 45, 1133–1140.

[56] Kim*, D., Y. Moon, S. Camargo, A. Sobel, A. Wing, H. Murakami, G. Vecchi, M. Zhao, and E. Page, 2018: Process-oriented diagnosis of tropical cyclones in high-resolution climate models. J. Climate, 31, 1685–1702, https://doi.org/10.1175/JCLI-D-17-0269.1.

[55] Adames, Á. F., D. Kim, A. H. Sobel, A. Del Genio, and J. Wu, 2017: Characterization of moist processes associated with changes in the MJO with increasing CO2. J. Adv. Model. Earth Syst., 9, 2946-2967. https://doi.org/10.1002/2017MS001040

[54] Adames, Á. F., D. Kim, A. H. Sobel, A. Del Genio, and J. Wu, 2017: Changes in the structure and propagation of the MJO with increasing CO2, J. Adv. Model. Earth Syst., 9, 1251–1268.

[53] Kim*, D. and E. D. Maloney, 2017: Review: Simulation of the Madden-Julian oscillation using general circulation models, The Global Monsoon System, 3rd Edition, C.-P. Chang et al., Eds., 119-130.

[52] Ahn, M.-S., D. Kim*, K. R. Sperber, I.-S. Kang, E. Maloney, D. Waliser, and H. Hendon, 2017: MJO simulation in CMIP5 climate models: MJO skill metrics and process-oriented diagnosis. Clim. Dyn., 1–23.

[51] Kim*, D., H. Kim, and M.-I. Lee, 2017: Why does the MJO detour the Maritime Continent during austral summer? Geophys. Res. Lett., 44, 2579–2587.

[50] Daleu, C., S. Woolnough, R. Plant, S. Sessions, M. Herman, A. Sobel, S. Wang, D. Kim, A. Cheng, G. Bellon, P. Peyrille, F. Ferry, A. Siebesma, B. van Ulft, 2016: Intercomparison of methods of coupling between convection and large-scale circulation. Part II: Comparison over non-uniform surface conditions. J. Adv. Model. Earth Syst., 8, 387–405.

[49] Kim, H.-M., D. Kim, F. Vitart, V. E. Toma, J.-S. Kug, and P. J. Webster, 2016: MJO propagation across the Maritime Continent in the ECMWF ensemble prediction system, J. Climate, 29, 3973–3988.

[48] Adames, Á. F., and D. Kim, 2016: The MJO as a dispersive, convectively coupled moisture wave: observations and theory. J. Atmos. Sci., 73, 913–941, https://doi.org/10.1175/JAS-D-15-0170.1 

*An article about the paper in UW News*Adames, Á.F. and D. Kim, 2017: Corrigendum. J. Atmos. Sci., 74, 3121–3124, https://doi.org/10.1175/JAS-D-17-0071.1*Supplementary guides: document version, slide version

[47] Field, R., M. Luo, D. Kim, A. D. Del Genio, A. Voulgarakis, J. Worden, 2015: Sensitivity of simulated tropospheric CO to subgrid physics parameterization: a case study of Indonesian biomass burning emissions in 2006. J. Geophys. Res., 120, 11743-11759, doi:10.1002/2015JD023402.

[46] Daleu, C., S. Woolnough, R. Plant, S. Sessions, M. Herman, A. Sobel, S. Wang, D. Kim, A. Cheng, G. Bellon, P. Peyrille, F. Ferry, A. Siebesma, B. van Ulft, 2015: Intercomparison of methods of coupling between convection and large-scale circulation. Part I: Comparison over uniform surface condition. J. Adv. Model. Earth Syst., 7, doi:10.1002/2015MS000468.

[45] Yoo, C., S. Park, D. Kim, J. Yoon, and H.-M. Kim, 2015: Boreal winter MJO teleconnection in the Community Atmospheric Model version 5 with the Unified Convection parameterization, J. Climate, 28, 8135–8150.

[44] Kim, D., M.-S. Ahn, I.-S. Kang, and A. D. Del Genio, 2015: Role of longwave cloud-radiation feedback in the simulation of the Madden-Julian oscillation. J. Climate, 28, 6979-6994.

[43] Del Genio, A. D., J. Wu, A. B. Wolf, Y. Chen, M.-S. Yao, and D. Kim, 2015: Constraints on cumulus parameterization from simulations of observed MJO events. J. Climate, 28, 6419-6442.

[42] Xavier, P. K., J. Petch, N. Klingaman, S. Woolnough, X. Jiang, D. Waliser, M. Caian, J. Cole, S. Hagos, C. Hannay, D. Kim, T. Miyakawa, M. Pritchard, R. Roehrig, E. Shindo, F. Vitart, and H. Wang, 2015: Vertical structure and diabatic processes of the Madden-Julian Oscillation: Biases and uncertainties at short range. J. Geophys. Res., 120, 4749-4763.

[41] Klingaman, N. P., S. Woolnough, X. Jiang, D. Waliser, P. Xavier, J. Petch, M. Caian, C. Hannay, D. Kim, H.-Y. Ma, W. Merryfield, T. Miyakawa, M. Pritchard, J. Ridout, R. Roehrig, E. Shindo, F. Vitart, H. Wang, N. Cavanaugh, B. Mapes, A. Shelly, and G. Zhang, 2015: Vertical structure and physical processes of the Madden–Julian oscillation: Linking hindcast fidelity to simulated diabatic heating and moistening. J. Geophys. Res., 120, 4690-4717.

[40] Jiang, X., D. Waliser, P. Xavier, J. Petch, N. Klingaman, S. Woolnough, B. Guan, G. Bellon, T. Crueger, C. DeMott, C. Hannay, H. Lin, W. Hu, D. Kim, C.-L. Lappen, M.-M. Lu, H.-Y. Ma, T. Miyakawa, J. Ridout, S. Schubert, J. Scinocca, K.-H. Seo, E. Shindo, X. Song, C. Stan, W.-L. Tseng, W. Wang, T. Wu, X. Wu, K. Wyser, G. Zhang, and H. Zhu, 2015: Vertical Structure and Physical Processes of the Madden-Julian Oscillation: Exploring Key Model Physics in Climate Simulations. J. Geophys. Res., 120, 4718–4748.

[39] Daloz, A. S., S. Camargo, J. Kossin, K. Emanuel, M. Horn, J. Jonas, D. Kim, T. LaRow, Y.-K. Lim, C. Patricola, M. Roberts, E. Scoccimarro, P. Vidale, M. Wehner, D. Shaevitz, H. Wang, and M. Zhao, 2015: Cluster analysis of explicitly and downscaled simulated North Atlantic tropical cyclone tracks. J. Climate, 28, 1333–1361.

[38] Shaevitz, D., S. Camargo, A. Sobel, J. Jonas, D. Kim, A. Kumar, T. LaRow, Y.-K. Lim, H. Murakami, K. Reed, M. Roberts, E. Scoccimarro, P. Vidale, H. Wang, M. Wehner, D. Shaevitz, M. Zhao, and N. Henderson, 2014: Characteristics of tropical cyclones in high-resolution models in the present climate, J. Adv. Model. Earth Syst., 6, 1154–1172.

[37] Field, R. D., D. Kim, A. N. LeGrande, J. Worden, M. Kelley, G. A. Schmidt, 2014: Evaluating climate model performance in the tropics with retrievals of water isotopic composition from Aura TES. Geophys. Res. Lett., 41, 6030–6036.

[36] Kang, D., M.-I. Lee, J. Im, D. Kim, H.-M. Kim, H.-S. Kang, S. D. Schubert, A. Arribas, and C. MacLachlan, 2014: Prediction of the Arctic Oscillation in Boreal Winter by Dynamical Seasonal Forecasting Systems. Geophys. Res. Lett. 41, 3577–3585.

[35] Sobel, A. H., S. Wang, and D. Kim, 2014: Moist static energy budget of the MJO during DYNAMO. J. Atmos. Sci., 71, 4276-4291.

[34] Kim*, D., P. Xavier, E. Maloney, M. Wheeler, D. Waliser, K. Sperber, H. Hendon, C. Zhang, R. Neale, Y.-T. Hwang, H. Liu, 2014: Process-oriented MJO simulation diagnostic: Moisture sensitivity of simulated convection. J. Climate, 27, 5379–5395.

[33] Wang, H., L. Long, Shaevitz, A. Kumar, W. Wang, J.-K. Schemm, M. Zhao, G. Vecchi, T. LaRow, Y.-K. Lim, S. Schubert, D. Shaevitz, S. Camargo, N. Henderson, A. Sobel, D. Kim, J. Jonas, and K. Walsh, 2014: How Well Do Global Climate Models Simulate the Variability of Atlantic Tropical Cyclones Associated with ENSO? J. Climate, 27, 5673-5692.

[32] Kim, H.-M., P. J. Webster, V. E. Toma, and D. Kim, 2014: Predictability and prediction skill of the MJO in two operational forecasting systems, J. Climate, 27, 5364-5378.

[31] Kim, D., M.-I. Lee, D. Kim, S. D. Schubert, D. E. Waliser, and B. Tian, 2014: Representation of tropical subseasonal variability of precipitation in global reanalyses. Clim. Dyn., 43, 517-534.

[30] Lee, M.-I., H.-S. Kang, D. Kim, D. Kim, H. Kim, and D. Kang, 2014: Validation of the experimental hindcasts produced by the GloSea4 seasonal prediction system. Asia-Pacific J. Atmos. Sci., 50, 307-326.

[29] Kim*, D., J.-S. Kug, and A. H. Sobel, 2014: Propagating vs. Non-propagating Madden-Julian oscillation events. J. Climate, 27, 111-125.

[28] Wilson, E. A., A. L. Gordon, and D. Kim, 2013: Observations of the Indian Ocean dipole on the Madden-Julian events. J. Geophys. Res., 118, 2588–2599.

[27] Hung, M-P., J.-L. Lin, W. Wang, D. Kim, T. Shinoda, and S. J. Weaver, 2013: MJO and convectively coupled equatorial waves simulated by CMIP5 climate models, J. Climate, 26, 6185–6214.

[26] Jang, Y.-S., D. Kim, Y.-H. Kim, D.-H. Kim, M. Watanabe, F.-F. Jin, and J.-S. Kug, 2013: Simulation of two types of El Nino from different convective parameters. Asia-Pacific J. Atmos. Sci., 49, 193-199.

[25] Ham, Y.-G., J.-S. Kug, D. Kim, Y.-H. Kim, and D.-H. Kim, 2013: What controls phase-locking of ENSO to boreal winter in coupled GCMs? Clim. Dyn., 40, 1551-1568.

[24] Linter, B. R., G. Bellon, A. H. Sobel, D. Kim, and D. J. Neelin, 2012: Implementation of the Quasi-equilibrium Tropical Circulation Model2 (QTCM2): Global simulations and convective sensitivity to free tropospheric moisture. J. Adv. Model. Earth Syst., 4, M12002.

[23] Sobel, A. H., and D. Kim, 2012: The MJO-Kelvin wave transition. Geophys. Res. Lett., 39, L20808.

[22] Ramsay, H. A., S. Camargo, and D. Kim, 2012: Cluster analysis of tropical cyclone tracks in the Southern Hemisphere. Clim. Dyn., 39, 897-917.

[21] Jiang, X., D. E. Waliser, D. Kim, M. Zhao, K. R. Sperber, W. Stern, S. D. Schubert, G. Zhang, W. Wang, M. Khairoutdinov, R. Neale, and M.-I. Lee, 2012: Simulation of the intraseasonal variability over the eastern Pacific ITCZ in climate models. Clim. Dyn., 39, 617-636.

[20] Ham, Y.-G., I.-S. Kang, D. Kim, and J.-S. Kug, 2012: El-Nino Southern Oscillation simulated and predicted in the SNU coupled GCMs. Clim. Dyn., 38, 2227-2242.

[19] Kim*, D., A. H. Sobel, A. D. Del Genio, Y. Chen, S. J. Camargo, M.-S. Yao, M. Kelley, and L. Nazarenko, 2012: Tropical subseasonal variability simulated in the NASA GISS general circulation model. J. Climate, 25, 4641-4659.

[18] Sperber, K. R. and D. Kim, 2012: Simplified metrics for the identification of the Madden-Julian oscillation in models. Atmos. Res. Lett., 13, 187-193.

[17] Del Genio, A. D., Y. Chen, D. Kim, and M.-S. Yao, 2012: The MJO transition from shallow to deep convection in CloudSat/CALIPSO data and GISS GCM simulations. J. Climate, 25, 3775-3770.

*Del Genio, A. D., Y. Chen, D. Kim, and M.-S. Yao, 2015: CORRIGENDUM. J. Climate, 28, 5471–5473.

[16] Kim, D. and I.-S. Kang, 2012: A bulk mass flux convection scheme for climate model - Description and moisture sensitivity. Clim. Dyn., 38, 411-429.

[15] Kim, D., Y.-S. Jang, D.-H. Kim, Y.-H. Kim, M. Watanabe, F.-F. Jin, and J.-S. Kug, 2011: ENSO sensitivity to cumulus entrainment in a coupled GCM. J. Geophys. Res., 116, D22112.

[14] Kim*, D., A. H. Sobel, and I.-S. Kang, 2011: A mechanism denial study on the Madden-Julian Oscillation. J. Adv. Model. Earth Syst., 3, M12007.

[13] Kim*, D., A. H. Sobel, D. M. W. Frierson, E. D. Maloney, and I.-S. Kang, 2011: A systematic relationship between intraseasonal variability and mean state bias in AGCM simulations. J. Climate, 24, 5506-5520.

[12] Kug, J.-S., K. P. Sooraj, and F.-F. Jin, Y.-G. Ham, and D. Kim, 2011: A possible mechanism for El Nino-like warming in response to the future greenhouse warming. Int. J. Climatol., 31, 1567-1572.

[11] Frierson, D. M. W., D. Kim, I.-S. Kang, M.-I. Lee, and J. L. Lin, 2011: Structure of AGCM-simulated convectively coupled Kelvin waves and sensitivity to convective parameterization. J. Atmos. Sci., 68, 26–45.

[10] Kang, I.-S., D. Kim, and J.-S. Kug, 2010: Mechanism for northward propagation of boreal summer intraseasonal oscillation: Convective momentum transport. Geophys. Res. Lett., 37, L24804.

[9] Kim*, D., K. Sperber, W. Stern, D. Waliser, I.-S. Kang, E. Maloney, W. Wang, K. Weickmann, J. Benedict, M. Khairoutdinov, M.-I. Lee, R. Neale, M. Suarez, K. Thayer-Calder, and G. Zhang, 2009: Application of MJO simulation diagnostics to climate models. J. Climate, 22, 6413-6436. https://doi.org/10.1175/2009JCLI3063.1

[8] CLIVAR Madden-Julian Oscillation Working Group; D. Waliser, K. Sperber, H. Hendon, D. Kim, E. Maloney, M. Wheeler, K. Weickmann, C. Zhang, L. Donner, J. Gottschalck, W. Higgins, I.-S. Kang, D. Legler, M. Moncrieff, S. Schubert, W. Stern, F. Vitart, B. Wang, W. Wang, S. Woolnough, 2009: MJO simulation diagnostics. J. Climate, 22, 3006-3030. https://doi.org/10.1175/2008JCLI2731.1

[7] Sooraj, K. P., D. Kim, J.-S. Kug, S.-W. Yeh, F.-F. Jin and I.-S. Kang, 2009: Effects of the low-frequency zonal wind variation on the high frequency atmospheric variability over the tropics. Clim. Dyn., 33, 495-507. https://doi.org/10.1007/s00382-008-0483-6

[6] Liu, P., Y. Kajikawa, B. Wang, A. Kitoh, T. Yasutari. T. Li, H. Annamalai, X. Fu, K. Kukuchi, R. Mizuta, K. Rajendran, D. E. Waliser and D. Kim, 2009: Tropical intraseasonal variability in the MRI-20km60L AGCM. J. Climate, 22, 2006-2022. https://doi.org/10.1175/2008JCLI2406.1

[5] Kug, J.-S., K. P. Sooraj, D. Kim, I.-S. Kang, F.-F. Jin, Y. N. Takayabu, M. Kimoto, 2009: Simulation of state-dependent high-frequency atmospheric variability associated with ENSO. Clim. Dyn., 32, 635-648. https://doi.org/10.1007/s00382-008-0434-2

[4] Lee, M.-I., M. J. Suarez, I.-S. Kang, I. M. Held and D. Kim, 2008: A moist benchmark calculation for the atmospheric general circulation models. J. Climate, 21, 4934-4954. https://doi.org/10.1175/2008JCLI1891.1

[3] Kim, D., J.-S. Kug, I.-S. Kang, F.-F. Jin, and A. Wittenberg, 2008: Tropical Pacific impacts of convective momentum transport in the SNU coupled GCM. Clim. Dyn., 31, 213-226. https://doi.org/10.1007/s00382-007-0348-4

[2] Lin, J. L., M.-I. Lee, D. Kim, I.-S. Kang, and D. Frierson, 2008: The impacts of convective parameterization and moisture triggering on AGCM-simulated convectively coupled equatorial waves. J. Climate, 21, 883-909. https://doi.org/10.1175/2007JCLI1790.1

[1] Lin, J. L., D. Kim, M.-I. Lee, and I.-S. Kang, 2007: Effects of cloud-radiative heating on AGCM simulations of convectively coupled equatorial waves. J. Geophys. Res., 112, D24107. https://doi.org/10.1029/2006JD008291

Other publications 

Kim, D., A. D. Del Genio, and M. S. Yao, 2013: Moist convection scheme in Model E2. Rep., arXiv:1312. 7496 pp.