Patra T K, Khan S, Srivastava R and Singh J K; Understanding wetting transitions using molecular simulations, Nanoscale and Microscale Phenomena, Edited by Joshi Y M and Khandekar S, Springer 2015 (ISBN 978-81-322-2288-0)
2022
Himanshu and Patra T. K., When does deep learning fail and how to tackle it? A critical analysis on polymer sequence-property surrogate models, arXiv:2210.06622 (2022)
Ayush K, Seth A. and Patra T. K., nanoNET: Machine Learning Platform for Predicting Nanoparticles Distribution in a Polymer Matrix, arXiv:2208.11448 (2022)
Ramesh P. S. and Patra, T. K., Polymer sequence design via molecular simulation-based active learning, Under review (2022)
Gautham S. M. B. and Patra T. K., Deep learning potential of mean force between polymer grafted nanoparticles. Soft Matter 18, 7909 (2022)
Bale, A.A., Gautham, S.M.B., Patra, T.K., Sequence-defined Pareto frontier of a copolymer structure. Journal of Polymer Science 60, 2100 (2022)
Patra T K, Data-Driven Methods for Accelerating Polymer Design, ACS Polymers Au 2, 8 (2022)
2021
Bhattacharya D and Patra T K, Deep learning order parameter for polymer phase transition, Preprint, arXiv:2102.12009 (2021)
Bhattacharya D and Patra T K, dPOLY: Deep learning of polymer phases and phase transition, Macromolecules 54, 3065 (2021).
Loeffler T D, Banik S, Patra T K, Sternberg M, Sankaranarayanan S KRS, Reinforcement learning in discrete action space applied to inverse defect design, Journal of Physics Communications (2021).
Dwivedi N, Neogi A, Patra T K, Dhand C, Dutta T, Yeo R J, Kumar R, Hashmi S A R, Srivastava A K, Tripathy S, Saifullah M S M, Sankaranarayanan S K R S, and Bhatia C. S., Angstrom-Scale Transparent Overcoats: Interfacial Nitrogen-Driven Atomic Intermingling Promotes Lubricity and Surface Protection of Ultrathin Carbon, Nano Letters 21, 8960 (2021)
2020
Patra T K, Loeffler T D, Sankaranarayanan S KRS, Accelerating copolymer inverse design using Monte Carlo Tree Search, Nanoscale 12, 23563 (2020)
Manna S, Loeffler T D, Patra T K, Chan H, Narayanan B, Sankaranarayanan S KRS, Active learning a neural network model for gold clusters and bulk from sparse first principles training data, ChemCatChem 12, 4796 (2020)
Hung J, Patra T K, and Simmons D S, Forecasting the experimental glass transition temperature from short time relaxation data, Journal of Non-Crystalline Solids 544, 120205 (2020)
Loeffler T D, Patra T K, Chan H, Cherukara M J, Sankaranarayanan S KRS, Active learning a coarse-grained neural network model for bulk water from sparse training data, Molecular System Design and Engineering 5, 902 (2020)
Loeffler T D, Patra T K, Chan H, Cherukara M J, Sankaranarayanan S KRS, Active learning the potential energy landscape for water clusters from sparse training data, The Journal of Physical Chemistry C 124, 4907 (2020)
Dwivedi N, Patra T K, Lee J-B, Yeo J R, Srinivasan S, Dutta T, Sasikumar K, Dhand C, Tripathy S, Saifullah M. S. M, Danner A, Hashmi S. A. R, Srivastava A. K., Ahn J-H, Sankaranarayanan S. K. R. S., Yang H, and Bhatia C. S., Slippery and wear-resistant surfaces enabled by interface engineered graphene, Nano Letters 20, 905 (2020).
2019-2010
Patra T K, Loeffler T D, Chan H, Cherukara M J, Narayanan B, Sankaranarayanan S KRS, A coarse-grained deep neural network model for liquid water, Applied Physics Letters 115, 193101 (2019)
Patra T K, Chan H, Shevchenko E V, Sankaranarayanan S KRS, Narayanan B, Ligand dynamics control structure, elasticity, and high-pressure behavior of nanoparticles supercrystals, Nanoscale 11, 10655 (2019)
Hung J, Patra T K, Meenakshisundaram V, Mangalara J H and Simmons D S, Universal localization transition underlying glass formation: insights from efficient molecular dynamics simulations of diverse supercooled liquids, Soft Matter 15, 1223 (2019)
Cheng Y, Yang J, Hung H, Patra T K*, and Simmons D S, Design rules for highly conductive polymeric ionic liquids from molecular dynamics simulations, Macromolecules 51, 6630 (2018)
Patra T K, Zhang F, Schulman D; Chan H, Cherukara M, Terrones M; Das S, Narayanan B, Sankaranarayanan S KRS, Defect dynamics in 2D materials probed by combining machine learning, molecular simulation and high-resolution microscopy, ACS Nano 12, 8006 (2018)
Patra T K, Meenakshisundaram V, Hung J, and Simmons D S, Neural network biased genetic algorithm for materials design: Evolutionary algorithms that learn, ACS Combinatorial Science 19, 96 (2017)
Meenakshisundaram V, Hung J, Patra T K Simmons D S, Designing sequence specific copolymer compatibilizers using a molecular-dynamics-simulation-based genetic algorithm, Macromolecules 50, 1155 (2017)
Katiyar P, Patra T K, Singh J K, Sarkar D and Pramanik A, Understanding adsorption behavior of silica nanoparticles over a cellulose surface in an aqueous medium, Chemical Engineering Science 141, 293 (2016)
Patra T K, Katiyar P and Singh J K, Substrate directed self-assembly of anisotropic nanoparticles, Chemical Engineering Science 121, 16 (2015)
Patra T K and Singh J K, Localization and stretching of polymers at the junction of two surfaces, Journal of Chemical Physics 140, 204909 (2014)
Patra T K and Singh J K, Polymer directed aggregation and dispersion of anisotropic nanoparticles, Soft Matter 10, 1823 (2014)
Patra T K and Singh J K, Coarse-grain molecular dynamics simulations of nanoparticle-polymer melts: Dispersion vs. Agglomeration, Journal of Chemical Physics 138, 144901 (2013)
Patra T K, Hens A, Singh JK, Vapor-liquid phase coexistence and transport properties of two-dimensional oligomers, Journal of Chemical Physics 137, 084701 (2012)
Ghosh A, Patra T K, Rishikant, Singh R K, Singh J K and Bhattacharya S, Surface electrophoresis of ds-DNA across orthogonal pair of surfaces, Applied Physics Letters 98, 164102 (2011)
B Ashok and Patra T K, Locating phase transitions in computationally hard problems, Pramana-Journal of Physics 75, 549 (2010)