# 4.2.2- Observe Energy

Standard 4.2.2 Ask questions and make observations about the changes in energy that occur when objects collide. Emphasize that energy is transferred when objects collide and may be converted to different forms of energy. Examples could include changes in speed when one moving ball collides with another or the transfer of energy when a toy car hits a wall. (PS3.B, PS3.C)

# 4.2.3 Energy Transfer

Standard 4.2.3 Plan and carry out an investigation to gather evidence from observations that energy can be transferred from place to place by sound, light, heat, and electrical currents. Examples could include sound causing objects to vibrate and electric currents being used to produce motion or light. (PS3.A, PS3.B)

Sound to Kinetic

# 4.2.4 DESIGN Device

Standard 4.2.4 Design a device that converts energy from one form to another. Define the problem, identify criteria and constraints, develop possible solutions using models, analyze data from testing solutions, and propose modifications for optimizing a solution. Emphasize identifying the initial and final forms of energy. Examples could include solar ovens that convert light energy to heat energy or a simple alarm system that converts motion energy into sound energy.

# 4.3.1 Model Wave Patterns

Standard 4.3.1 Develop and use a model to describe the regular patterns of waves. Emphasize patterns in terms of amplitude and wavelength. Examples of models could include diagrams, analogies, and physical models such as water or rope. (PS4.A)

Wave Model Idea

# 4.3.2 Light Reflection

Standard 4.3.2 Develop and use a model to describe how visible light waves reflected from objects enter the eye causing objects to be seen. Emphasize the reflection and movement of light. The structure and function of organs and organ systems and the relationship between color and wavelength will be taught in Grades 6 through 8. (PS4.B)

Gummy Bear and Light

Gummy Bears Explained

Demo of Concepts

# 4.3.3 Wave Design Solution

Standard 4.3.3 Design a solution to an information transfer problem using wave patterns. Define the problem, identify criteria and constraints, develop possible solutions using models, analyze data from testing solutions, and propose modifications for optimizing a solution. Examples could include using light to transmit a message in Morse code or using lenses and mirrors to see objects that are far away.