Bryophytes hold a larger gene family space than vascular plants
Following 500 million years of evolution, extant land plants compose two sister groups: the bryophytes and the vascular plants. Despite their small size and simple structure, bryophytes thrive in a wide variety of habitats, including extreme conditions. However, the genetic basis for their ecological adaptability and long-term survival is not well understood. A comprehensive super-pangenome analysis, incorporating 123 newly sequenced bryophyte genomes, reveals that bryophytes possess a significantly greater diversity of gene families than vascular plants. This includes a higher number of unique and lineage-specific gene families, originating from extensive new gene formation and continuous horizontal transfer of microbial genes over their long evolutionary history. The evolution of bryophytes' rich and diverse genetic toolkit, which includes novel physiological innovations like unique immune receptors, likely facilitated their spread across different biomes. These newly sequenced bryophyte genomes offer a valuable resource for exploring alternative evolutionary strategies for terrestrial success.
Resolution of the ordinal phylogeny of mosses using targeted exons from organellar and nuclear genomes
Mosses are a highly diverse lineage of land plants, whose diversification, spanning at least 400 million years, remains phylogenetically ambiguous due to the lack of fossils, massive early extinctions, late radiations, limited morphological variation, and conflicting signal among previously used markers. Here, we present phylogenetic reconstructions based on complete organellar exomes and a comparable set of nuclear genes for this major lineage of land plants. Our analysis of 142 species representing 29 of the 30 moss orders reveals that relative average rates of non-synonymous substitutions in nuclear versus plastid genes are much higher in mosses than in seed plants, consistent with the emerging concept of evolutionary dynamism in mosses. Our results highlight the evolutionary significance of taxa with reduced morphologies, shed light on the relative tempo and mechanisms underlying major cladogenic events, and suggest hypotheses for the relationships and delineation of moss orders.
The Cycas genome and the early evolution of seed plants
Cycads represent one of the most ancient lineages of living seed plants. Identifying genomic features uniquely shared by cycads and other extant seed plants, but not non-seed-producing plants, may shed light on the origin of key innovations, as well as the early diversification of seed plants. Here, we report the 10.5-Gb reference genome of Cycas panzhihuaensis, complemented by the transcriptomes of 339 cycad species. Nuclear and plastid phylogenomic analyses strongly suggest that cycads and Ginkgo form a clade sister to all other living gymnosperms, in contrast to mitochondrial data, which place cycads alone in this position. We found evidence for an ancient whole-genome duplication (WGD) in the common ancestor of extant gymnosperms. The Cycas genome contains four homologues of the fitD gene family that were likely acquired via horizontal gene transfer (HGT) from fungi, and these genes confer herbivore resistance in cycads. The male-specific region of the Y chromosome of C. panzhihuaensis contains a MADS-box transcription factor exclusively expressed in male cones that is similar to a system reported in Ginkgo, suggesting that a sex determination mechanism controlled by MADS-box genes may have originated in the common ancestor of cycads and Ginkgo. The C. panzhihuaensis genome provides an important new resource of broad utility for biologists.