Current Students
MS students
함수혁
이문기
박주성
이송아 (중앙대학교 응용통계학과) :
Mar. 2024 - present
PM 10 prediction using Extreme random forest
박강비 (중앙대학교 식품공학/응용통계학과) :
Apr. 2024 - present
Prediction of the success of bank telemarketing
Alumni
안소영
2020년 2월 졸업
MA Thesis: Forecasting daily PM10 concentration in Seoul Jong-no District by using various statistical techniques.
S An and Y. Lim (2020). Forecasting daily PM10 concentration in Seoul Jong-no District by using various statistical techniques. Journal of the Korean Data & Information Science Society, 31(1), 185–196.
오송첨단의료산업진흥재단 재직 / 성균관대학교 삼성융합의과학원 박사과정
2. 이웅주
2020년 2월 졸업
MA Thesis: Robust Group Independent Component Analysis.
H Kim, YJ Lee and Y. Lim (2021). Robust Group Independent Component Analysis. The Korean Journal of Applied Statistics, 34(2), 135-147.
(재) 한국장기이식연구단 재직
3. 황석영
2020년 8월 졸업
MA Thesis: Comparison of ICA algorithms using EEG data.
우리자산운용 재직
4. 진태훈
2020년 8월 졸업
MA Thesis: Classification of subway stations in Seoul using k-centres Functional Clustering .
VGEN 재직
5. 장은성
2021년 2월 졸업
MA Thesis: Classification via Principal Differential Analysis.
E Jang and Y. Lim (2021). Classification via Principal Differential Analysis. Communications for Statistical Applications and Methods, 28(2), 135-150.
University of Maryland, College Park 박사과정
6. 김예슬
2021년 2월 졸업
MA Thesis: Analysis of Particulate Matter via Geographically Weighted Principal Component Analysis.
대림건설 혁신학교부서 데이터분석팀 재직
7. 안효정
2021년 8월 졸업
MA Thesis: Clustering load patterns recorded from Advanced Metering Infrastructure.
H, Ann and Y. Lim (2021). Clustering load patterns recorded from advanced metering infrastructure. The Korean Journal of Applied Statistics, 34(6), 969–977.
데이터솔루션 재직
8. 강동현
2022년 2월 졸업
MA Thesis: Clustering Non-stationary Advanced Metering Infrastructure Data.
D. Kang and Y. Lim (2022). Clustering Non-stationary Advanced Metering Infrastructure Data. Communications for Statistical Applications and Methods, 29(2), 85-99.
신한은행 재직
9. 강성진
2022년 2월 졸업
MA Thesis: Ensemble Mapper.
S. Kang and Y. Lim (2021). Ensemble Mapper. Stat. 10, e405.
현대오토에버 재직
10. 이상혁
2022년 2월 졸업
MA Thesis: Prediction of extreme PM2.5 concentrations via extreme quantile regression.
Lee, S and Y. Lim (2022). Prediction of extreme PM 2.5 concentrations via extreme quantile regression. Communications for Statistical Applications and Methods, 29(3), 319-331.
11. 이지선
2022년 2월 졸업
MA Thesis: Clustering daily AMI data using the sequential clustering method.
J. Lee and Y. Lim (2022). Clustering daily AMI data using the two-step clustering method. Journal of the Korean Data & Information Science Society, 33(1), 153-166.
위데이터랩 재직
12. 김수현
2022년 8월 졸업
MA Thesis: Zero-Inflated Poisson Mixture Model applied to two real data.
서울대학교병원 융합의학기술원 융합의학과 박사과정
13. 김창우
2022년 8월 졸업
MA Thesis: Mapper applied to COVID 19 data.
서울 아산병원 연구원
14. 김현성
2023년 2월 졸업
서울대학교 통계학과 박사과정
15. 임동경
2023년 2월 졸업
MA Thesis: Forecasting high levels of PM10 in Korea based on the principal expectile component regression.
Lim, D., and Lim, Y. (2023). Forecasting high levels of PM10 in Korea based on the principal expectile component regression. The Korean Data & Information Science Society, 34(1), 157-166.
KT스카이라이프 재직
16. 임형준
2023년 2월 졸업
MA Thesis: Change points detection for nonstationary multivariate time-series.
Lim H, and Lim. Y. (2023), Change points detection for nonstationary multivariate time series. Communications for Statistical Applications and Methods, 30(4), 369-388.
LG CNS 재직
17. 최지은
2023년 2월 졸업
MA Thesis: Wavelet-based prediction method for ground temperature in South Korea.
Choi, J., and Lim, Y. (2023). Wavelet-based prediction method for ground temperature in South Korea. The Korean Data & Information Science Society, 34(2), 279-289.
분당서울대병원 연구원
18. 이경서
2024년 2월 졸업
MA Thesis: Forecasting Korea’s GDP growth rate based on the dynamic factor model
Lee, KS., and Lim, Y. (2024). Forecasting Korea’s GDP growth rate based on the dynamic factor model, The Korean Journal of Applied Statistics, In press.
코리아리서치인터네셔널 재직
19. 이정균
2024년 2월 졸업
MA Thesis: Aerosol optical depth prediction based on dimension reduction methods
Lee, J., and Lim, Y. (2024). Aerosol optical depth prediction based on dimension reduction methods. Communications for Statistical Applications and Methods, In press.
한국평가데이터(KODATA) 재직, 신용리스크 컨설팅 직무