水化學與工程實驗室(ACE lab)研究水環境中之新興污染物,目前關注微、奈米塑膠 (MP/NP) 和奈米材料的宿命、傳輸、和生物累積作用,塑膠粒汙染幾乎無所不在,從高山、極地到人腦都已發現蹤跡,我們開發前瞻、高靈敏度之單顆粒質譜(single-particle ICP-MS)和熱解質譜方法來追蹤複雜介質和生物體中的 NP,同時發展新方法學(NAM)之預測模式,以預測其在水環境和生物(如魚)中的分布,促進動物試驗的替代、減少和改進 (3R) 原則,提高風險評估之效率。另一個研究主軸為研發經濟、高效、節能的工程方法於濃縮和破壞有Forever Chemical永久化學物質之稱的全氟烷基化合物(PFAS),評估各種分離技術,如管柱吸附和膜分離程序,以濃縮和分離水中的PFAS,研發前瞻高效之破壞性處理技術,來分解濃縮後PFAS和再生吸附劑,以實現完全脫氟,基於實驗室過去在奈米技術的專業知識,合成奈米催化劑並調控其獨特性能,以實現高效節能之PFAS分解技術。
The Aquatic Chemistry and Engineering (ACE) lab studies emerging contaminants (ECs) with a strong focus on those in the aquatic system. We study the fate, transport, and biological accumulation of a range of ECs, such as micro- and nanoplastics (MP/NP) and nanomaterials. We develop and utilize cutting-edge, highly sensitive single-particle-based as well as pyrolytic mass spectrometric methods to track NP in complex media and biota, in parallel with the development of New Approach Methodology (NAM) predictive models to forecast their exposure in the aquatic environment and animals (e.g., fish), in line with the Replacement, Reduction, and Refinement (3Rs) principles of animal testing. Another front of our research strives for cost-effective and energy-efficient engineering methods to sequester and destroy ECs, with the current focus on Forever Chemicals, perfluoroalkyl substances (PFAS) from water. We evaluate scalable separation approaches to concentrate and sequester PFAS from water. We develop novel destructive treatment methods for concentrated PFAS and adsorbent regeneration, with an ultimate goal of high-level defluorination. We leverage our expertise in nanotechnology to tailor nano-catalysts (e.g., 2D boron nitride) with unique properties toward energy-efficient destruction of PFAS.
Research highlights
https://www.sciencedirect.com/science/article/pii/S1385894725094598?via%3Dihub
A novel yet simple method to activate hexagonal boron nitride toward highly efficient photocatalytic decomposition of PFOA, PFOS, and GenX is reported. Ubiquitous chloride ion was found to catalyze the decomposition of PFOA by forming chlorine radicals.
創新、簡單的酸活化六角狀氮化硼(hB非常有效地光催化分解PFOA、PFOS、和GenX全氟化物,水中常見氯離子在光催化過程中產生氯自由基並催化PFOA分解,除氟率達80%以上,酸活化氮化硼分解PFAS展現優越之能量效率EEO和光量子產率。
https://www.sciencedirect.com/science/article/pii/S2452074825000412
First study to strictly couple material flow analysis (MFA) release model and hydrodynamic river watershed model to forcast the fate and transport of nanomaterials with high spatiotemporal resolution. Collaborative work with Prof. Chih-Hua Chang of NCKU and Prof. Bernd Nowack and Dr. Yuanfang Zheng of EMPA in Switzerland. Tides are shown to significantly accumulate nanomaterials in river sections receiving large pollution loads. This modeling framework that is applicable to nano- and microplastics allows efficient and large-scale risk assessment of emerging contaminants.
首個結合物質流環境釋放模型與流域水質模式於精準預測奈米物質時間空間之分布,研究顯示潮汐加劇奈米物質在污染嚴重河段之累積,此模擬架構可延伸至微奈米塑膠汙染,有效大規模進行新興汙染物質之風險評估。
https://www.sciencedirect.com/science/article/pii/S0304389425016279
Single-particle ICP-MS coupled with customized gas exchange devise (GED) (GED-spICP-MS) has the potential to directly quantify airborne fine particle metal contents in real time on a single-particle basis without prior membrane collection (in collaboration with Profs. Ta-Chih Hsiao and Yi-Pin Lin of National Taiwan University). This revolutionizes the analysis of airborne particles by allowing a direct and efficient method to track and characterize their sources and metal compositions.
大氣微粒成分分析新方法,結合單顆粒式耦合電漿質譜儀(spICP-MS)和客製之氣體交換裝置(GED)(GED-spICP-MS),有潛力於直接、即時分析大氣微粒金屬成分,具有單顆粒之解析度(與台大環工所蕭大智、林逸彬教授合作),無須耗時之濾紙收集,可用於追蹤及分析大氣微粒之來源與金屬組成。