202577. Emergence of distinct relaxation behaviour and Quantum Regression Theorem in the Ultra-strong Coupling LimitSakil Khan and Bijay Kumar Agarwalla [arXiv]76. Understanding synchronization between quantum self-sustained oscillators through coherence generationMohit Kumar and Bijay Kumar Agarwalla [arXiv]75. Enhancing the Performances of Autonomous Quantum Refrigerators via Two-Photon TransitionsBrij Mohan, Bijay Kumar Agarwalla, and Manabendra Nath Bera [arXiv]74. Bipartite particle number fluctuations in dephased long-range lattice systemsLokesh Tater, S. Sarkar, D. Singh Bhakuni, and Bijay Kumar Agarwalla [arXiv]73. Assessment of spectral phases of non-Hermitian quantum systems through complex and singular valuesMahaveer Prasad, S. Harshini Tekur, Bijay Kumar Agarwalla, Manas Kulkarni
Phys. Rev. B (Letter) 111, L161408 (2025) [arXiv] [DOI]72. Quantum trajectories and Page-curve entanglement dynamicsKatha Ganguly, Preethi Gopalakrishnan, Atharva Naik, Bijay Kumar Agarwalla, Manas Kulkarni [arXiv]71. Arbitrary order transfer matrix exceptional points and van Hove singularitiesMadhumita Saha, Bijay Kumar Agarwalla, Manas Kulkarni, and Archak Purkayastha
Phys. Rev. B (Letter) 111, L041405 (2025) [arXiv] [DOI]70. Effect of order of transfer matrix exceptional points on transport at band edges
Madhumita Saha, Bijay Kumar Agarwalla, Manas Kulkarni, and Archak Purkayastha Phys. Rev. B 111 125412 (2025) [arXiv] [DOI]202469. Collective Dissipation of Oscillator Dipoles Strongly Coupled to 1-D Electromagnetic ReservoirsS. Guha, I. Bar, Bijay Kumar Agarwalla, and B. P. Venkatesh [arXiv]68. Thermoelectric performance of a minimally nonlinear voltage probe and voltage-temperature probe heat engine with broken time-reversal symmetryJayasmita Behera, Salil Bedkihal, Bijay Kumar Agarwalla, Malay Bandyopadhyay [arXiv]67. Higher-order gap ratios of singular values in open quantum systemsS. Harshini Tekur, M. S. Santhanam, B. K. Agarwalla, and Manas Kulkarni Phys. Rev. B Letter 110 L241410 (2024) [arXiv] [DOI]66. Transport in open quantum systems in presence of lossy channels
Katha Ganguly, Manas Kulkarni, Bijay Kumar Agarwalla
Phys. Rev. B 110 235425 (2024) [arXiv] [DOI]65. Anomalous transport in long-ranged open quantum systems
Abhinav Dhawan, Katha Ganguly, Manas Kulkarni, and Bijay Kumar Agarwalla Phys. Rev. B Letter 110, L081403 (2024) [arXiv] [DOI]64. Impact of dephasing on non-equilibrium steady-state transport in fermionic chains with long-range hoppingSubhajit Sarkar, Bijay Kumar Agarwalla, Devendra Singh BhakuniPhys. Rev. B 109. 165408 (2024) [arXiv] [DOI]63. Impact of dephasing probes on incommensurate lattices Bishal Ghosh, Sandipan Mohanta, Manas Kulkarni, and Bijay Kumar AgarwallaJ. Stat. Mech: Theory and Expt 063101 (2024) [arXiv] [DOI] 62. Modified quantum regression theorem and consistency with Kubo-Martin-Schwinger conditionSakil Khan, Bijay Kumar Agarwalla, Sachin Jain New. J. Phys 26 123011 (2024) [arXiv] [DOI]202361. Study of non-equilibrium Green's functions beyond Born approximation in open quantum system Katha Ganguly and Bijay Kumar Agarwalla [arXiv] 60. Full statistics of non-equilibrium heat and work for many-body quantum Otto engine and universal bounds: A non-equilibrium Green’s function approachSandipan Mohanta and Bijay Kumar Agarwalla Phys. Rev. E. 108, 064127 (2023) [arXiv] [DOI]59. Filling an empty lattice by local injection of quantum particlesA. Trivedi, Bijay Kumar Agarwalla, A. Dhar, M. Kulkarni, A. Kundu, S. Sabhapandit
Phys. Rev. A 108, 052204 (2023) [arXiv] [DOI]58. Quantum coherent control of non-linear thermoelectric transport in a triple-dot Aharonov-Bohm heat engineJayasmita Behera, Salil Bedkihal, Bijay Kumar Agarwalla, Malay Bandyopadhyay Phys. Rev. B 108, 165419 (2023) [arXiv] [DOI]57. Environment assisted superballistic scaling of conductanceMadhumita Saha, Bijay Kumar Agarwalla, Manas Kulkarni, and Archak PurkayasthaPhys. Rev. B letter, 108, L161115 (2023) [arXiv] [DOI]56. Exceptional hyper-surfaces of transfer matrices of finite-range lattice models and their consequences on quantum transport propertiesMadhumita Saha, Manas Kulkarni, Bijay Kumar Agarwalla Phys. Rev. B 108, 075406 (2023) [arXiv] [DOI]55. Precision bound in periodically modulated continuous quantum thermal machinesArpan Das, Shishira Mahunta, Bijay Kumar Agarwalla, Victor MukherjeePhys. Rev. E 108, 014137 (2023) [arXiv] [DOI]54. Study of bounds on non-equilibrium fluctuations for asymmetrically driven quantum Otto engineS. Mohanta, M. Saha, B. P. Venkatesh, and Bijay Kumar AgarwallaPhys. Rev. E 108, 014118 (2023) [arXiv] [DOI]53. Universal subdiffusive behavior at band edges from transfer matrix exceptional pointsMadhumita Saha, Bijay Kumar Agarwalla, Manas Kulkarni, and Archak Purkayastha, Phys. Rev. Lett 130, 187101 (2023) [arXiv] [DOI]202252. Quantum Regression theorem for multi-time correlators: A detailed analysis in the Heisenberg Picture S. Khan, Bijay Kumar Agarwalla, and S. Jain Phys. Rev. A. 106, 022214 (2022) [arXiv] [DOI]51. Quantum transport in quasi-periodic lattice systems in presence of Buttiker probesM. Saha, B. Prasanna Venkatesh, and Bijay Kumar Agarwalla, Phys Rev B 105, 224204 (2022) [arXiv] [DOI]50. Counting statistics of energy transport across squeezed thermal reservoirH. Yadalam, Bijay Kumar Agarwalla, and U. Harbola Phys. Rev. A 105, 062219 (2022) [arXiv] [DOI]49. Universal bounds on cooling power and cooling efficiency for autonomous absorption refrigerators S. Mohanta, S. Saryal, and Bijay Kumar Agarwalla Phys. Rev. E 105, 034127 (2022) [arXiv] [DOI]48. Universal bounds on fluctuations for machines with broken time-reversal symmetry S. Saryal, S. Mohanta, and Bijay Kumar Agarwalla Phys. Rev. E. 105, 024129 (2022) [arXiv] [DOI]202147. Sub-diffusive phases in open clean long-range systems A. Purkayastha, M. Saha, and Bijay Kumar Agarwalla Phys. Rev. Lett 127 240601 (2021) [arXiv] [DOI]46. Bounds on fluctuations for finite-time quantum Otto cycle S. Saryal and Bijay Kumar Agarwalla Phys. Rev. E Lett 103, L060103 (2021) [arXiv] [DOI]45. Universal Bounds on Fluctuations in Continuous Thermal MachinesS. Saryal, M. Gerry, I. Khat, D. Segal, and Bijay Kumar AgarwallaPhys. Rev. Lett 127 190603 (2021) [arXiv] [DOI]44. Harmonic chains and the thermal diode effect Na'im Kalantar, Bijay Kumar Agarwalla and D. Segal Phys. Rev. E 103, 052130 (2021) [arXiv] [DOI] 43. Thermodynamic uncertainty relation for energy transport in transient regime --Model studyS. Saryal, O. Sadekar, and Bijay Kumar AgarwallaPhys. Rev. E 103, 022141 (2021) [arXiv] [DOI] 42. Read-out of Quasi-periodic Systems using QubitsMadhumita Saha, Bijay Kumar Agarwalla, and B. Prasanna Venkatesh Phys. Rev. A 103, 023330 (2021) [arXiv] [DOI]202041. On the definitions and simulations of vibrational heat transport in nanojunctions Na'im Kalantar, Bijay Kumar Agarwalla, and D. Segal [arXiv] (accepted in J. Chem. Phys)40. Thermodynamic uncertainty relation in atomic-scale quantum conductorsH. Friedman, Bijay Kumar Agarwalla, Ofir Shein-Lumbroso, Oren Tal, and Dvira Segal [arXiv] [DOI]Phys. Rev. B, (Editor's Suggestion) 101, 195423 (2020).39. Experimental study of the thermodynamic uncertainty relation S. Pal, S. Saryal, D. Segal, T. S. Mahesh, and Bijay Kumar Agarwalla [arXiv] [DOI]Phys. Rev. Research (Rapid Communication) 2, 022044 (2020)201938. Thermodynamic uncertainty relation in thermal transport Sushant Saryal, Hava Friedman, Dvira Segal, and Bijay Kumar Agarwalla [arXiv] [DOI]Phys. Rev. E 100, 042101 (2019)37. Photon Statistics of a double quantum dot micromaser: Quantum treatment Bijay K Agarwalla, Manas Kulkarni, and Dvira Segal [arXiv] [DOI]Phys. Rev. B 100, 035412 (2019).36. Experimental demonstration of the validity of the quantum heat-exchange fluctuation relation in an NMR setupS. Pal, T S Mahesh, Bijay K Agarwalla [ArXiv] [DOI]Phys. Rev. A 100, 042119 (2019)35. Quantum entanglement and transport in non-equilibrium interacting double-dot setup: The curious role of degeneracyA. Dey, D. S. Bhakuni, Bijay K Agarwalla, A. Sharma [ArXiv] [DOI]J. Phys. Cond. Matt 32 075603 (2019).34. Path-integral methodology and simulations of quantum thermal transport: Full counting statistics approachM. Kilgour, Bijay K Agarwalla, D. Segal J. Chem. Phys, 150 084111 (2019) [Editors pick] [ArXiv] [DOI](Special topic on dynamics of open quantum system)33.Experimental emulation of quantum non-Markovian dynamics and coherence protection in the presence of information back-flowDeepak Khurana, Bijay K Agarwalla, T S Mahesh Phys. Rev. A 99, 022107 (2019) [ArXiv] [DOI]201832. On the validity of thermodynamic uncertainty relation in quantum systems Bijay K Agarwalla, Dvira Segal Phys. Rev. B 98, 155438 (2018) [arXiv] [DOI] 31. Quantum energy exchange and refrigeration: a full-counting statistics approach.Hava M Friedmann, Bijay K Agarwalla, and D SegalNew. J. Phys. 20 083026 (2018) [ArXiv] [DOI]201730. Quantum absorption refrigerator at strong coupling Anqi Mu, Bijay. K. Agarwalla, Gernot Scheller, and D. SegalNew J Phys 19, 123034 (2017) [ArXiv] [DOI]---------------------------------------------------------------------------BEFORE JOINING IISER---------------------------------------------------------------29. Quantum efficiency bound for continuous heat engines coupled to non-canonical reservoirs Bijay. K. Agarwalla, Jian Hua Jiang, and D. Segal Phys. Rev. B 96, 104304 (2017) [ArXiv] [DOI]28. The Anderson impurity model out-of-equilibrium: Assessing the accuracy of simulation techniques with an exact current-occupation relation Bijay. K. Agarwalla and D. SegalJ. Chem. Phys 147, 054104 (2017) [ArXiv] [DOI]27. Energy transfer statistics for Spin-Boson model Bijay. K. Agarwalla and D. SegalNew J. Phys. 19, 043030 (2017). [ArXiv] [DOI]26. Effects of vibrational anharmonicity on molecular electronic conduction and energy conversion efficiencyHava Friedman, Bijay. K. Agarwalla and D. Segal J. Chem. Phys 146, 092303 (2017) [ArXiv] [DOI]201625. Giant optical amplification in large-scale quantum dot circuit-QED systemsBijay K Agarwalla, M. Kulkarni, S. Mukamel, and D. SegalPhys. Rev. B 94, 121305(R)(2016). [ArXiv] [DOI]24. Tunable photonic cavity coupled to a voltage-biased double quantum dot system: Diagrammatic NEGF approach Bijay K Agarwalla, M. Kulkarni, S. Mukamel, and D. Segal [ArXiv] [DOI]Phys. Rev. B 94, 035434 (2016). 23. Vibrational Heat Transport in Molecular junctions (Invited Review)D. Segal and Bijay. K. AgarwallaAnnu. Rev. Phys. Chem. 2016. 67, 185-209 [ArXiv] [DOI]22. Geometric effects in non-equilibrium electron transfer statistics in adiabatically driven quantum junctionsH. Goswami, Bijay. K. Agarwalla, and U. Harbola Phys. Rev. B 93 195441 (2016) [ArXiv] [DOI]21. Reconciling perturbative approaches in phonon assisted transport junctionsBijay. K. Agarwalla and D. Segal J. Chem. Phys 144, 074102 (2016) [ArXiv] [DOI]201520. Full Counting statistics of vibrationally-assisted electronic conduction: transport and fluctuations of the thermoelectric efficiencyBijay. K. Agarwalla, J. -H. Jiang, D. Segal Phys. Rev. B 92, 245418 (2015) [ArXiv] [DOI]19. Thermoelectricity in molecular junctions with harmonic and anharmonic modesInvited Article for Beilstein Journal of Nanotechnology, Thematic series on "Molecular machines and Devices".Bijay. K. Agarwalla, J.H. Jiang and D. Segal Beilstein J. Nanotechnol. 2015, 6, 2129-2139 [ArXiv] [DOI]18.Efficiency Statistics and Bounds of Time-Reversal Symmetry Breaking Systems J. -H. Jiang, Bijay. K. Agarwalla, D. Segal Phys. Rev. Lett 115 040601 (2015) [ArXiv] [DOI] 17. Coherent (photon) vs incoherent (current) detected ultrafast nonlinear optical signals from single molecules in open junctions (Special Issue on Multidimensional spectroscopy)Bijay. K. Agarwalla, U. Harbola, Weijie Hua, Yu Zhang and S. MukamelJ. Chem. Phys 142 (212445) (2015). [DOI] 16. Evaluation of optical probe signals from nonequilibrium systems"Bijay. K. Agarwalla, K. E. Dorfman, and S. MukamelPhys. Rev. A 91 052501 (2015). [ArXiv] [DOI]15. Stochastic Liouville equations for impulsive transient absorption and stimulated Raman spectroscopyBijay. K. Agarwalla, H. Ando, K. E. Dorfman, and S. MukamelJ. Chem. Phys 142, 024115 (2015). [DOI]14. Comment on “Frequency-domain stimulated and spontaneous light emission signals at molecular junctionsU. Harbola, Bijay. K. Agarwalla, and S. MukamelJ. Chem. Phys 142, 137102 (2015). [DOI]201413.Frequency-domain stimulated and spontaneous light emission signals at molecular junctions U. Harbola, Bijay. K. Agarwalla, and S. MukamelJ. Chem. Phys, 141, 074107 (2014). [DOI]12. Exchange Fluctuation theorem for heat transport between multi-terminal harmonic systemsBijay. K. Agarwalla, Huanan. Li, Baowen. Li, and J.-S. WangPhys. Rev. E , 89, 052101 (2014). [ArXiv] [DOI]11.Turing-Hopf instabilities through a combination of diffusion, advection, and finite size effects S. Galhotra, J.K. Bhattacharjee, and Bijay. K. AgarwallaJ. Chem. Phys, 140 (2), 024501 (2014). [DOI]10.Diffusion driven instability to a drift driven one: Turing patters in the presence of electric fieldBijay. K. Agarwalla, S. Galhotra, and J.K. Bhattacharjee Journal of Mathematical Chemistry 52 (1), 188-197 (2014). [DOI]9. Nonequilibrium Green’s function method for quantum thermal transport" (Invited Review) J.-S. Wang, Bijay. K. Agarwalla, Huanan Li, and J. ThingnaFront. Physics {9}, 673 (2014). [ArXiv] [DOI] 20138.Cumulants of heat transfer in nonlinear quantum systems Huanan. Li, Bijay. K. Agarwalla, Baowen. Li, and J. -S. WangEur. Phys. J. B, 86 (12) 1-8 (2013). [ArXiv] [DOI]7. Classical Heat transport in anharmonic molecular junctions: Exact solutions Liu Sha, Bijay. K. Agarwalla, Baowen. Li, and J. -S. WangPhys. Rev. E 87, 022122 (2013). [ArXiv] [DOI]20126.Cumulant generating function formula of heat transfer in ballistic system with lead-lead coupling Huanan. Li, Bijay. K. Agarwalla, and J. -S. WangPhys. Rev. B 86, 165425 (2012). [ArXiv] [DOI]5. Generalized Caroli formula for the transmission coefficient with lead-lead couplingHuanan. Li, Bijay. K. Agarwalla, and J.-S. WangPhys. Rev. E 86, 011141 (2012). [ArXiv] [DOI]4. Counting statistics of heat transport in harmonic junctions – transient and steady statesBijay. K. Agarwalla, Baowen. Li, and J.-S. WangPhys. Rev. E 85, 051142 (2012). [ArXiv] [DOI]20113. Transient behavior of full counting statistics in thermal transportJ.-S. Wang, Bijay. K. Agarwalla, and Huanan. LiPhys. Rev. B, 84, 153412, (2011). [ArXiv] [DOI]2. Heat generation and transport due to time-dependent forcesBijay. K. Agarwalla, J.-S. Wang, and Baowen. LiPhys. Rev. E, 84, 041115, (2011). [ArXiv] [DOI] 1. Phonon Hall effect in ionic crystals in the presence of static magnetic fieldBijay. K. Agarwalla, L. Zhang, J.-S. Wang, and Baowen. Li Eur. Phys. J. B 81, 197, (2011) [ArXiv] [DOI] ------------------------------------------------------------------------------------------------------------------------------------------------------------------PhD Thesis : "Study of full counting statistics in heat transport in transient and steady state and quantum fluctuation theorem" 2013, Material research society of Singapore Medal for most outstanding thesis in Department of Physics, NUS, Singapore[pdf]Master's Thesis: "Hard core lattice models in low dimension" 2008, Nominated for Best project award in Department of Physics at IIT Bombay, India.[pdf]