[1] M.Asadzadeh and L.Beilina, A posteriori error analysis
in a globally convergent numerical method for a hyperbolic
coefficient inverse problem, available on-line at Chalmers
Preprint Seris ISSN 1652-9715, 2010:8.
[2] L.Beilina and M.V.Klibanov, A globally convergent
numerical method for a coefficient inverse problem, SIAM
J. Scientific Computing, V.31, N.1, 478-509, 2008.
[3] L. Beilina and M. V. Klibanov. A globally convergent
numerical method and adaptivity for a hyperbolic coefficient inverse
problem, available on-line at http://www.ma.utexas.edu/mp_arc/,
J. Inverse Problems, to appear.
[4] L. Beilina and M. V. Klibanov. Synthesis of global
convergence and adaptivity for a hyperbolic coefficient inverse
problem in 3D, available on-line at Chalmers
Preprint Series ISSN 1652-9715, 2009:11, J. Inverse and
Ill-posed problems, 18(1), 2010.
[5] M. V. Klibanov and A. Timonov, Carleman Estimates
for Coefficient Inverse Problems and Numerical Applications, VSP,
Utrecht, The Netherlands, 2004.
[6] L.Beilina and C.Johnson, Hybrid FEM/FDM method for
inverse scattering problem, in Numerical Mathematics and
Advanced Applications - ENUMATH 2001, Springer-Verlag.
[7] L.Beilina and C.Johnson, A posteriori error estimation in
computational inverse scattering, Mathematical Models and Methods in
Applied Sciences, 15, 23-37, 2005.
[8] L. Beilina, Adaptive hybrid FEM/FDM methods for inverse
scattering problems, Inverse Problems and Information Technologies,
1, 73-116, 2002.
[9] L. Beilina, Adaptive hybrid finite element/difference methods:
application to inverse elastic scattering, J. Inverse and Ill-Posed
Problems, 11, 585-618, 2003.
[10] L. Beilina, Efficiency of a hybrid FEM/FDM methods for elastic
waves, Applied and Computational Mathematics, 2, 13-29, 2003.
[11] L. Beilina and C. Clason, An adaptive hybrid FEM/FDM method
for an inverse scattering problem in scanning acoustic microscopy, SIAM J. Sci.Comp., 28, 382-402, 2006.
[12] R. Cubeddu, A. Pifferi, P.Taroni, A. Torricelli, and G.
Valentini, Noninvasive Absorption and Scattering Spectroscopy of Bulk
Diffusive Media: An Application to the Optical Characterization of Human
Breast, Appl. Phys. Lett., 74, 874-876, 1999.
[13] M.V. Klibanov, M.A. Fiddy, L. Beilina, N. Pantong
and J. Schenk, Picosecond scale experimental verification of a
globally convergent numerical method for a coefficient inverse
problem, available on-line at http://www.ma.utexas.edu/mp_arc,
Inverse problems, 26(3), 2010.
[14] S. Arridge, Optical tomography in medical imaging,
Inverse Problems, 15, 841-893, 1999.
[15] D. Grosenick, H. Wabnitz, H.R. Rinneberg, K.T. Moesta and P.M.
Schlag, Development of a time-domain optical mammograph and first in
vivo applications, Applied Optics, 38, 2927-2943, 1999.
[16] Piao, D., Xie, H., Zhang, W., Krasinski, J. S., Zhang, G.,
Dehghani, H., Pogue, B. W., Endoscopic, Rapid near infrared optical
tomography, Optics Letters, 31(19) 2876-2878, 2006.
[17] R. Becker and R. Rannacher, An optimal control
approach to a posteriori error estimation in finite element methods,
Acta Numerica, Cambridge University Press, 1-225, 2001.
[18] Dehghani, H., Davis, S., Jiang, S., Pogue, B. W., Paulsen, K.
D., Spectrally-resolved bioluminescence optical tomography, Optics
Letters, 31(3), 365-367, 2006.
[19] E. I. Rau, V. N. E. Robinson, An annular toroidal
backscattered electron energy analyzer for use in scanning electron
microscopy, Scanning, 18, 556-561, 1996.
[20] B. J.Tromberg, O.Coquoz, H.B.~Fishkin, T.Pham, E. R.
Anderson, J. Bytler, M. Cahn, J. D. Gross, V. Venugopalan, and D. Pham,
Non-invasive measuerements of brest tissue optical properties using
frequency-domain photon migration, Proc. Trans. R. Sosciety, London, 352,
661-668, 1997.