Использование: изобретение относится к сварке, в частности к электродуговой сварке на переменном токе, и может использоваться при ручной сварке. Сущность изобретения: сварочный аппарат содержит магнитопровод с первичной и вторичной обмотками, причем дополнительная обмотка установлена на наружной боковой поверхности магнитопровода и последовательно соединена с первичной обмоткой. Предусмотрено выполнение магнитопровода кольцеобразной формы. 2 ил.
Изобретение относится к области сварки, в частности к электродуговой сварке на переменном токе, и может быть применено при ручной сварке.
Известен сварочный аппарат с отдельным дросселем [1, с. 35, 36, рис. 27] состоящий из понижающего трансформатора и дросселя.
Данное устройство позволяет получить падающую внешнюю характеристику.
Недостатком является то, что создание ЭДС самоиндукции осуществляется при больших изменениях сварочного тока и его больших абсолютных значениях, что вызывает необходимость изготавливать массивные и значительные по габаритам сварочные аппараты это проявляется в изготовлении соизмеримого по габаритам и весу с сердечником (магнитопроводом) трансформатора сердечника дросселя. Кроме того, так как обмотка дросселя находится в сильноточной (сварочной) цепи, то поперечное сечение и вес этой обмотки велики.
Известен сварочный аппарат, содержащий трансформатор, имеющий магнитопровод в виде стержней, на которых расположены по две катушки: одна с первичной обмоткой; вторая со вторичной обмоткой. Катушки обмоток соединены параллельно. Первичная обмотка закреплена неподвижно. Катушки вторичной обмотки перемещаются винтовым механизмом вручную [1, с. 40, 41] Указанный сварочный аппарат позволяет исключить дроссель, уменьшить габариты и вес за счет образования магнитных потоков рассеяния, которые создают значительное индуктивное сопротивление и обеспечивают получение падающей внешней характеристики.
Однако такие технические решения недостаточно снижают габариты и вес сварочного аппарата ввиду большого расхода обмоточного провода (по две катушки в каждой обмотке) и большой длины стержней магнитопровода, нужных для регулирования сварочного тока перемещением одной из обмоток.
Наиболее близким по технической сущности к заявленному является сварочный аппарат, содержащий магнитопровод с первичной, вторичной и дополнительной обмотками, причем дополнительная обмотка установлена на наружной боковой поверхности магнитопровода.
Следует подчеркнуть, что в этом устройстве магнитопровод выполнен кольцеобразной формы и при его работе возникают два взаимно перпендикулярных (ортогональных) магнитных потока.
Цель изобретения уменьшение габаритов и веса сварочного аппарата при сохранении качества сварки.
Поставленная цель достигается тем, что в сварочный аппарат, содержащий магнитопровод с первичной и вторичной обмотками, введена дополнительная обмотка, установленная на наружной боковой поверхности магнитопровода и последовательно соединенная с первичной обмоткой.
Создание дополнительного магнитного потока и одновременное увеличение индуктивного сопротивления первичной цепи позволяет при изготовлении сварочного аппарата создать падающую внешнюю характеристику за счет размещения дополнительной обмотки в слаботочной первичной цепи, при этом напряжение во вторичной цепи определяется следующим образом:
, где Uвх напряжение, подводимое от источника переменного тока; h коэффициент трансформации, причем круговая частота; I1 ток в первичной цепи, и выполнить эту обмотку такого же малого сечения, как и провод первичной обмотки, что ведет к снижению расхода обмоточного провода по массе.
Кроме того, операции увеличения индуктивного сопротивления первичной цепи и придание дополнительному магнитному потоку направления, перпендикулярного основному магнитному потоку, позволяют при изготовлении устройства последовательно соединить первичную и дополнительную обмотки так, что при этом обмотки своими магнитными полями не влияют друг на друга.
Исключение этого влияния и увеличение индуктивного сопротивления согласно способу реализуются в конструкции сварочного аппарат по-новому: дополнительная обмотка наматывается на наружную боковую поверхность магнитопровода перпендикулярно плоскостям витков первичной и вторичной обмоток.
При этом индуктивное сопротивление дополнительной обмотки Xд.о= Lд.о, где Lд.о= кD2/l [2, с. 116] создается за счет перераспределения параметров, определяющих ее индуктивность Lg.о. С одной стороны, уменьшается магнитная проницаемость
так как дополнительный магнитный поток идет не вдоль направления прокатки анизотропной холоднокатанной стали сердечника, а поперек [3, с. 21] с другой стороны, при такой намотке сильно увеличивается диаметр дополнительной обмотки D.
Причем чем меньше периметр этой боковой поверхности (что осуществляется применением, например, тороидального трансформатора с сердечником кольцеобразной формы), тем меньше габариты и вес устройства.
На фиг. 1 изображена принципиальная схема предлагаемого сварочного аппарата для электродуговой сварки на переменном токе; на фиг. 2 - расположение дополнительной обмотки на наружной боковой поверхности магнитопровода.
Сварочный аппарат содержит: магнитопровод 1 с первичной 2, вторичной 3 и дополнительной 4 обмотками; 5 наружная боковая поверхность магнитопровода 1; 6 провода первичной обмотки для подачи напряжения Uвх от источника переменного тока; 7 провода вторичной обмотки, с которых снимается напряжение U2 при сварке; I1 ток в первичной и в дополнительной обмотках; I2 ток во вторичной (сварочной) цепи; fосн - основной магнитный поток, индуктируемый током I1 в магнитопроводе I;
доп дополнительный магнитный поток в магнитопроводе 1, перпендикулярный потоку
осн и поэтому не влияющий на него; Tp трансформатор.
Аппарат работает следующим образом.
В первичной цепи создают дополнительный магнитный поток, перпендикулярный направлению основного магнитного потока, реализуемый в устройстве путем навивки дополнительной обмотки на наружную боковую поверхность того же самого магнитопровода, преимущественно кольцеобразной формы, на котором размещены первичная и вторичная обмотки.
Такая компоновка, когда все обмотки расположены на одном "носителе" (магнитопроводе), существенно уменьшает габариты сварочного аппарата. Кроме того, последовательное соединение первичной и дополнительной обмоток при подаче входного напряжения Uвх уменьшает ток J1 за счет одновременного создания индуктивного сопротивления на дополнительной обмотке. Это позволяет одновременно с созданием дополнительного магнитного потока увеличить индуктивное сопротивление первичной цепи. В сварочном аппарате эти обмотки навивают проводом малого сечения S1 Sдоп.обм
2-5 мм2, так как J1 20-30 A. Это также позволяет снизить вес всего устройства.
Дополнительная обмотка является "буферной": при коротком замыкании в начале сварки и при случайном уменьшении дугового промежутка в процессе сварки растет сварочный ток J2, что, в свою очередь, вызывает возникновение рабочего тока J1 в первичной цепи, причем J1> >Jхол.хода. Согласно выражению
(см. ранее) увеличение J1 приведет к падению напряжения на дополнительной обмотке, так как она намотана поперек виткам первичной и вторичной обмоток, то ее магнитный поток не оказывает влияния на основной магнитный поток и, следовательно, не меняет параметров трансформатора сварочного аппарата. Напряжение U1 в первичной обмотке снижается и, следовательно, снижается напряжение в сварочной цепи до рабочего, оптимального значения.
Величины минимального тока J1 и ток дуги определяются индуктивным сопротивлением первичной цепи в целом и дополнительной обмотки как ее составной части.
Изменяя в необходимых пределах одну из составляющих индуктивного сопротивления (Xд.o= Lд.o
) индуктивность , добиваются как минимум сохранения, а в основном повышения качества сварки: стабильности дуги и прочного сварного шва за счет применения определенной марки электротехнической стали магнитопровода (простая конструкция навивка из анизотропной холоднокатанной ленты и минимум обработки позволяют применить сталь с повышенным до 3,9 4,8% содержанием кремния и, следовательно, минимальными потерями на перемагничивание и вихревые токи), при этом магнитная проницаемость
попер. в поперечном направлении существенно меньше продол
Подбирая диаметр D, высоту 1 намотки, количество витков
дополнительной обмотки, определяют необходимую для качественной сварки индуктивность Lд.о. и дополнительное сопротивление Xд.о..
Таким образом предложенное техническое решение позволяет уменьшить габариты и вес сварочного аппарата при сохранении качества сварки.
Источники информации:
1. Геворкян В.Г. Основы сварочного дела. М. Высшая школа, 1971, с.35,36, рис.27 (аналог), с.40,41 (прототип).
2. Жеребцов И.Л. Электротехника для радистов. М. ДОСААФ, 1964, с.116.
3. Брускин Д.Э. и др. Электрические машины и микромашины. М. Высшая школа, 1981, изд. 2-е, с.21.
Сварочный аппарат, содержащий магнитопровод с первичной, вторичной и дополнительной обмотками, причем дополнительная обмотка установлена на наружной боковой поверхности магнитопровода, отличающийся тем, что первичная и дополнительная обмотки соединены последовательно.
http://www.findpatent.ru/patent/208/2082572.html
© FindPatent.ru - патентный поиск, 2012-2016
Генератор Фитча-Говела
Одним из оригинальных типов источника высокого напряжения является Генератор Фитча-Говела (Генератор Фитча—Хауэлла) разработанный в 1964 году. Подобный генератор был независимо изобретён в 1961 году советскими учёными Белкиным и Жарковой, и применялся для питания импульсных газовых лазеров.
Конструкция
Конструктивно он состоит из двух основных узлов - спирально свернутой линии передачи (полосковой) с дополнительным слоем изоляции между витками и RC-цепочки с двойным разрядником. Внешний проводник в спирали (B) является активным, а внутренний (A), под изолятором, пассивным. Наружный конец активного проводника подключается к коммутатору (прямоугольник с двумя полукругами в правом верхнем углу). Остальные концы обоих проводников открыты, то есть весят в воздухе. Высоковольтный выход (HV out) находится в середине спирали. Напряжение питания генератора подается на вход (Vc in).
Принцип действия
До того как разрядник прекращает подачу напряжения на полосковые линии происходит заряжение образуемого ими конденсатора. При повороте прерывателя конденсатор начинает разряжаться через разрядник, в результате чего заряд перемещается вниз по активной линии, отражается от открытой цепи на внутреннем конце, и двигается обратно на разрядник, изменяя полярность активной линии относительно своего первоначального заряда. Теперь все точечные заряды движутся в том же направлении, в результате чего (за очень короткий период времени), напряжение между активной и пассивной линиями возрастает в два раза.
Особенности
Напряжение каждой пары активной и пассивной линии в идеале (при условии идеальных материалов и конструкции и, следовательно, без потерь) ровняется удвоенному напряжению питания генератора. Если есть 2NV активной и пассивной линии, то общее напряжение на выходе в идеале будет:
Виды конструкций
Американские патенты на эту конструкцию можно увидеть по ссылке тут.
Резона́тор — колебательная система, в которой происходит накопление энергии колебаний за счёт резонанса с вынуждающей силой. Обычно резонаторы обладают дискретным набором резонансных частот.
В технике обычно встречаются резонаторы с колебанием электромагнитных или механических величин. Конструкция резонатора сильно зависит от его резонансных частот.
Механические резонаторы
Этот раздел не завершён.
Вы поможете проекту, исправив и дополнив его.
Механические резонаторы можно разделить на две условные группы:
Резонатор накопительного действия.
Резонатор мгновенного действия.
Резонатор накопительного действия
Отличительной чертой такого резонатора является накопление энергии внешнего воздействия за счет уменьшения частоты собственных колебаний. С математической точки зрения любой резонатор, частота колебаний которого строго больше частоты колебаний возмущающей силы, является накопительным. Классическим примером являются качели. Усиление выходной мощности происходит за счет сложения мощностей нескольких колебаний возмущающей силы.
Резонатор мгновенного действия
Под «мгновенным действием» подразумевается совершение одного периода колебания резонатора за время, не большее периода колебания возмущающей силы. Примером такого резонатора может служить резонатор Гельмгольца. Усиление в таких резонаторах может происходить за счет:
смещения по времени мощности резонансной частоты на входе, то есть, плавно меняясь на входе резонатора, мощность может увеличиться на выходе за счет уменьшения длительности сигнала;
поглощения энергии других (не резонансных) частот. Этот эффект используется певцами при практике резонансного пения;
поглощения теплового движения окружающего пространства.
Резонаторы мгновенного действия могут иметь коэффициент усиления до 45 дБ (10 000 раз).
Электромагнитные резонаторы
Подробнее по этой теме см. Объёмный резонатор#СВЧ.
Объёмный резона́тор — устройство, основанное на явлении резонанса, в котором вследствие граничных условий возможно существование на определенных длинах волндобротных колебаний в виде бегущей или стоячей волны.
Электромагнитный резонатор, в котором накопление энергии электромагнитных колебаний происходит в объёме, ограниченном хорошо проводящими поверхностями. Объёмному резонатору присущ спектр частот собственных колебаний и соответствующие им моды колебаний (виды колебаний). Каждая мода определяется своей структурой электрических и магнитных полей. В простейших объёмных резонаторах на основе отрезков волновода, ограниченных с торцов проводящими стенками различают: колебания H-вида, имеющие продольные (вдоль оси волновода z) составляющие только магнитного поля Hz (составляющая электрического поля Ez=0); колебания E-вида, имеющие продольные составляющие только Ez (Hz=0).
Возбуждение колебаний в объёмных резонаторах, как и в радиоволноводах, осуществляется с помощью петель, штырей, щелей, электронных потоков и т.п. Объёмные резонаторы широко применяют в приборах СВЧ электроники (клистронах, магнетронах и др.), устройствах техники СВЧ (волномерах, фильтрах и др.). В объёмных резонаторах применяемых в электронных приборах для взаимодействия с электронными потоками, чаще всего используются основные виды колебаний. При этом основные характеристики объёмного резонатора — резонансная частота, добротность и волновое сопротивление — отождествляются с характеристиками эквивалентного колебательного контура.
В соответствии с уравнениями Максвелла переменное электрическое поле порождает переменное магнитное поле, и наоборот. Между электрическим и магнитным полями происходит непрерывный обмен энергией. Если каким-либо образом ограничить некоторый объём пространства отражающими стенками, препятствующими потере энергии из этого объёма за счет излучения, то в этом объёме на некоторых длинах волн, определяемых размерами устройства можно возбудить электромагнитные колебания. Если полый резонатор образован металлическими стенками, то он также часто называется закрытым резонатором. Объёмные СВЧ резонаторы могут быть также заполнены диэлектриком. Существуют также открытые диэлектрические резонаторы, без металлических стенок, в которых волна отражается от границ диэлектрика за счет эффекта полного внутреннего отражения — резонаторы с модами «шепчущей галереи». В связи с тем, что электрические и магнитные поля почти не выходят за пределы границ объёмного резонатора, их добротность чрезвычайно высока (10000 и более)
В генераторах СВЧ[1]-излучений (клистрон, магнетрон) резонаторы представляют собой металлическую конструкцию, используемую для генерации волн определённой длины.
Кварцевый резонатор (жарг.«кварц») — прибор, в котором пьезоэлектрический эффект и явление механического резонанса используются для построения высокодобротного резонансного элемента электронной схемы. Следует отличать кварцевый резонатор от устройств, использующих другие пьезоэлектрические материалы — например, специальную керамику (см. Керамический резонатор[en]).
Принцип действия
На пластинку, кольцо или брусок, вырезанные из кристалла кварца определённым образом, нанесены 2 или более электродов — проводящие полоски.
Пластинка закреплена и имеет собственную резонансную частоту механических колебаний.
При подаче напряжения на электроды благодаря пьезоэлектрическому эффекту происходит изгибание, сжатие или сдвиг в зависимости от того, каким образом вырезан кусок кристалла.
Однако колеблющаяся пластинка в результате того же пьезоэлектрического эффекта создаёт во внешней цепи противо-ЭДС, что можно рассматривать как явление, эквивалентное работе катушки индуктивности в колебательном контуре.
Если частота подаваемого напряжения равна или близка к частоте собственных механических колебаний пластинки, затраты энергии на поддержание колебаний пластинки оказываются намного ниже, нежели при большом отличии частоты. Это тоже соответствует поведению колебательного контура.
Условное обозначение кварцевого резонатора (сверху) и его эквивалентная схема (снизу)
Эквивалентная схема[править | править вики-текст]
C0 — собственная ёмкость кристалла, образуемая кристаллодержателем и/или обкладками резонатора;
C1, L1 — эквивалентные ёмкость и индуктивность механической колебательной системы резонатора;
R1 — эквивалентное сопротивление потерь механической колебательной системы.
Пьезоэлектрический эффект был впервые открыт братьями Жаком и Пьером Кюри в 1880 году. Поль Ланжевен впервые использовал этот эффект в часовом резонаторе гидролокатора перед первой мировой войной. Первый кристальный резонатор, работающий на сегнетовой соли, был изготовлен в 1917 году и запатентован в 1918 году Александром М. Николсоном (Alexander M. Nicholson) из компании Bell Telephone Laboratories, хотя это оспаривалось Уолтером Гайтоном Кэди (Walter Guyton Cady), который изготовил кварцевый резонатор в 1921 году. Некоторые улучшения в кварцевые резонаторы вводились позже Льюисом Эссеном и Джорджем Вашингтоном Пирсом (George Washington Pierce).
Первые стабильные по частоте кварцевые резонаторы были разработаны в 1920—1930-х годах. Начиная с 1926 года, кварцевые резонаторы на радиостанциях использовались в качестве элементов, задающих несущую частоту. В то же время резко возросло количество компаний, начавших выпускать кварцевые резонаторы; только до 1939 года в США было выпущено более чем 100 тыс. штук.
Применение[править | править вики-текст]
Одним из самых популярных видов резонаторов являются резонаторы, применяемые в часовых схемах. Резонансная частота часовых резонаторов составляет 32 768 Гц; будучи поделённой на 15-разрядном двоичном счётчике, она даёт интервал времени в 1 секунду.
Применяются в генераторах с фиксированной частотой, где необходима высокая стабильность частоты. В частности, в опорных генераторах синтезаторов частот и в трансиверных радиостанциях для формирования DSB-сигнала на промежуточной частоте и детектирования SSB или телеграфного сигнала.
Также применяются в кварцевых полосовых фильтрах промежуточной частоты супергетеродинных приёмников. Такие фильтры могут выполняться по лестничной или дифференциальной схеме и отличаются очень высокой добротностью и стабильностью по сравнению с LC-фильтрами.
По типу корпуса кварцевые резонаторы могут быть выводные для объёмного монтажа (стандартные и цилиндрические) и для поверхностного монтажа (SMD).
Качество схемы, в которую входят кварцевые резонаторы, определяют такие параметры, как допуск по частоте (отклонение частоты), стабильность частоты, нагрузочная ёмкость, старение.
Резонистор — полупроводниковый прибор с механическим резонансным элементом, используемый в качестве электрического резонатора.
Устройство и принцип действия
Принцип действия состоит в преобразовании электрических колебаний в механические, резонансе механического колебательного элемента и обратном преобразовании сигнала в электрический. Основой прибора служит полевой транзистор с вибрирующим затвором, к которому подсоединена балка, играющая роль механического резонатора, колебания балки возбуждаются под действием электрического поля. Возможны также другие варианты конструкции. Резонисторы на частотах 1…45 КГц имеют добротность 100 — 750 и используются в основном на низких частотах, существуют также высокочастотные резонисторы, до 1 МГц
ЖИГ-резонатор, резонатор на железо-иттриевом гранате — резонатор СВЧ-диапазона на основе ферромагнитного резонанса в железо-иттриевом гранате (сокр. ЖИГ).
ЖИГ-резонаторы имеют исключительно высокую добротность (2…3·103), при этом способны перестраиваться по частоте в широком диапазоне (в некоторых конструкциях — больше декады, в большинстве практических конструкций — порядка октавы).
Применение
На основе ЖИГ-резонаторов строятся перестраиваемые генераторы и фильтры СВЧ-диапазона. ЖИГ-генераторы используются в качестве гетеродинов анализаторов спектра и генераторов стандартных сигналов, благодаря сочетанию способности к перестройке в широком диапазоне и малых фазовых шумов. Фильтры, построенные на основе ЖИГ-резонаторов, находят применение в качестве преселекторов высококачественных приемников СВЧ-диапазона, в составе широкополосных умножителей частоты.
Устройство и принципы работы
Работа ЖИГ-резонаторов основана на явлении ферромагнитного резонанса (резонанса прецессионного движения спиновых моментов электронов) в монокристалах феррита — железо-иттриевого граната. От прочих ферритов, в которых также проявляются аналогичные резонансные явления, ЖИГ отличается малыми потерями различного происхождения, что и объясняет высокую добротность. Частота резонанса с высокой степенью линейности пропорциональна внешнему магнитному полю, что и позволяет осуществлять перестройку резонатора, и не зависит от размера образца, что позволяет сделать резонатор весьма малым.
Упрощённая схема цепи связи ЖИГ-резонатора с микрополосковой схемой
Из-за сильной зависимости резонанса от формы[1], резонирующий элемент обычно оформляется в виде сферы (редко — диска) диаметром около 0,5 мм, с хорошо обработанной поверхностью. Для использования в качестве фильтра связь с резонатором осуществляется, как правило, двумя взаимно перпендикулярными индуктивными полупетлями, одна из которых соединяется с входом фильтра, другая — с выходом. Резонатор помещается между полупетлями, на держателе из материала с хорошей теплопроводностью. На нерезонансных частотах ЖИГ ведёт себя как диэлектрик и связь между линиями отсутствует в силу их перпендикулярности. На частотах, близких к резонансу возникают компоненты поля, обеспечивающие сильную связь входной и выходной цепей. В случае использования резонатора в составе генератора можно обойтись одной петлёй связи, что упрощает конструкцию.
На аналогичном принципе действует фильтр с резонатором в окне между перпендикулярными волноводами.
Резонатор с цепями связи помещается в магнитную систему, обеспечивающую подмагничивание. Как правило, система состоит из двух соленоидов (один для создания основного поля, другой, с меньшим числом витков, для обеспечения модуляции поля) и постоянного магнита (для уменьшения потребления тока основным соленоидом).
Дуговая вакуумная печь
Дугова'я ва'куумная печь, электрическая печь для плавки металлов в вакууме энергией электрической дуги. Д. в. п. — газоразрядная система, где дуга существует на парах переплавляемого металла. Различают Д. в. п. для выплавки слитков (главным образом из титана и стали) в медных водоохлаждаемых кристаллизаторах (рис. 1) и для получения фасонного литья из высокореакционных и тугоплавких металлов (главным образом титана и ниобия) путём так называемой плавки в гарнисаже (рис. 2).
Д. в. п. бывают с расходуемым (наиболее распространены в промышленности) и нерасходуемым электродами. Расходуемый металлический электрод состоит из материала, подлежащего переплаву, его химический состав в основном соответствует составу получаемого сплава. Между электродом и затравкой при подаче постоянного тока возникает электрическая дуга. Выделяющееся тепло расплавляет электрод; образующийся жидкий металл стекает либо в кристаллизатор, либо в тигель при плавке в гарнисаже. В Д. в. п. с нерасходуемым электродом, который изготовляют из вольфрама или графита, в зону плавки подают твёрдую шихту. Мощность электрической дуги выбирают с таким расчётом, чтобы обеспечить получение плотной бездефектной макроструктуры слитка. Давление в дуговом промежутке при плавке определяется упругостью паров металла над расплавом и составляет для стали 0,1—1 н/м2, для титана 1—10 н/м2 и для молибдена 0,01—0,1 н/м2. Заданное давление поддерживают вакуумными насосами.
Металл, полученный в Д. в. п. с охлаждаемым кристаллизатором, характеризуется высокими механическими свойствами, а также низким содержанием газовых примесей и неметаллических включений. Так, при переплаве стали в Д. в. п. количество неметаллических включений в металле в результате переплава снижается в 2—3 раза, крупные включения (свыше 15—20 мкм) удаляются полностью. Концентрация азота понижается на 30—35%, кислорода в 2—3 раза, содержание серы уменьшается на 20%. Переплавленный металл характеризуется высокой вязкостью и пластичностью в широком интервале температур, повышенной усталостной прочностью, высокой изотропностью механических свойств.
В Д. в. п. для плавки в гарнисаже применяют графитовые и металлические охлаждаемые тигли. Толщину гарнисажа в течение плавки поддерживают постоянной путём регулирования мощности электрической дуги. При плавке в гарниссаже в тигле наплавляют необходимую массу жидкого металла, которую затем сливают в форму. Для фасонного литья из титана используют кокили, а также формы, изготовленные из графита или магнезита, которые для улучшения заполнения устанавливают на столе центробежной литейной машины, являющейся частью печи. Отливки из титановых сплавов, полученные в Д. в. п. путём плавки в гарниссаже, обладают высокими механическими свойствами. Ведутся работы по созданию Д. в. п. на переменном токе с использованием легко ионизируемых добавок, вводимых в электроды.
Лит.: Неуструев А. А., Ходоровский Г. Л., Вакуумные гарниссажные печи, М., 1967; Белянчиков Л. Н., Основы расчёта дуговых вакуумных печей, М., 1968.
Рис. 2. Схема дуговой вакуумной электропечи для плавки в гарнисаже: 1 — механизм перемещения электрода; 2 — электрод; 3 — горнисаж; 4 — графитовый тигель; 5 — охлаждаемая обойма; 6 — смотровое окно; 7 — форма; 8 — центробежная машина.
Рис. 1. Схема дуговой вакуумной электропечи с кристаллизатором: 1 — расходуемый электрод; 2 — затравка; 3 — поддон; 4 — охлаждаемый кристаллизатор; 5 — слиток; 6 — механизм перемещения электродов.
Дуговая печь
Дугова'я печь, электрическая печь, в которой используется тепловой эффект электрической дуги для плавки металлов и др. материалов. Первые промышленные Д. п. построены в 1898—1901 П. Эру во Франции и Э. Стассано в Италии. В России первая Д. п. была установлена в 1910 на Обуховском заводе в Петербурге.
По способу нагрева Д. п. подразделяют на печи прямого действия, печи косвенного действия и печи с закрытой дугой. В печах прямого действия электрические дуги горят между электродами и нагреваемым телом (рис. 1, а). В печах косвенного действия дуга горит между электродами на некотором расстоянии от нагреваемых материалов, которым тепло от дуги передаётся излучением (рис. 1, б). В печах с закрытой дугой дуги горят под слоем твёрдой шихты, окружающей электроды (рис. 1, в). Шихта нагревается теплом, выделяющимся в дуге, а также джоулевым теплом, образующимся при прохождении тока через шихту.
Д. п. нашли широкое применение в металлургии — главным образом для плавки стали и в несколько видоизменённом виде для выплавки ферросплавов и чугуна из руд, а также в химической промышленности — для производства карбида кальция, фосфора и др. продуктов. Электроэнергия в Д. п. подаётся от трансформатора через медные шины и угольные или (чаще) графитированные электроды, большей частью круглого сечения. Наибольшее распространение получили трёхфазные Д. п., в которых дуги горят между тремя электродами и перерабатываемым материалом.
Современная электросталеплавильная Д. п. представляет собой мощный высокомеханизированный и автоматизированный агрегат (рис. 2), в котором сведена к минимуму продолжительность производственных операций между плавками — выпуск предыдущей и загрузка материалов для следующей, что позволяет наиболее эффективно использовать рабочее печное время.
Основной элемент конструкции Д. п. — металлический корпус в виде кожуха, как правило, круглого сечения. Изнутри кожух футерован высокоогнеупорными материалами. Огнеупорная кладка съёмного свода печи выполнена в кольце. Для загрузки шихты в печь свод обычно поднимают и отводят в сторону. В стенах Д. п. имеются одно или два рабочих окна и одно выпускное отверстие с жёлобом для слива металла и шлака в ковш. В своде расположены отверстия для ввода электродов, снабжённые водоохлаждаемыми металлическими коробками (экономайзерами). Д. п. устанавливается на люльке для возможности наклона печи в сторону рабочего окна или выпускного отверстия при помощи механизма наклона с электрическим или гидравлическим приводом. Современные Д. п. снабжены индукторами для электромагнитного перемешивания жидкой ванны.
Д. п. строят различной ёмкости (до 250 т) с мощностью трансформатора до 85 000 ква.
Лит.: Электрические промышленные печи, М.—Л., 1948; Окороков Н. В., Электроплавильные печи черной металлургии, 3 изд., М., 1950.
Б. С. Барский.
Рис. 2. Дуговая сталеплавильная печь ДСП-200 ёмкостью 200 т: 1 — графитированный электрод диаметром 710 мм; 2 — электрододержатель; 3 — свод; 4 — водоохлаждаемое сводовое кольцо; 5 — цилиндрический кожух; 6 — водоохлаждаемая вспомогательная дверка; 7 — электромеханический механизм поворота печи вокруг вертикальной оси; 8 — электромеханический механизм наклона печи; 9 — сливной носок; 10 — подвижный токоподвод из водоохлаждаемых гибких кабелей; 11 — шток для вертикального перемещения системы стойка — рукав — электродержатель — электрод; 12 — токоподвод из охлаждаемых медных труб.
Рис. 1. Схемы дуговых печей: а — прямого действия; б — косвенного действия; в — с закрытой дугой.
Дуговая угольная лампа
Дугова'я у'гольная ла'мпа, газоразрядный источник света, в котором используется излучение электрического разряда между угольными электродами. Созданная Н. П. Яблочковым в 1876 для целей освещения, Д. у. л. получила распространение в 1-й половине 20 в. в связи с развитием прожекторостроения и кинопроекционной аппаратуры.
Д. у. л. работает обычно на постоянном токе с последовательно включённым балластным сопротивлением. Она состоит из двух угольных электродов, расположенных либо соосно, либо под углом 40—130° один к другому (положительный электрод, как правило, располагается горизонтально). Зажигание Д. у. л. производится сведением электродов до соприкосновения (с последующим разведением их на некоторое расстояние) или с помощью вспомогательного электрода. Во время работы лампы происходит сгорание и испарение электродов, расстояние между ними поддерживается автоматически. Различают Д. у. л. простую (электроды из углеродистых материалов), пламенную (в анод добавлены соли металлов — пламенные вещества) и высокой интенсивности дуги. В Д. у. л. высокой интенсивности, получившей наибольшее распространение, анод изготовляют с фитилём, содержащим в основном соли редкоземельных элементов. Такая Д. у. л. отличается большими значениями мощности (свыше 100 квт), тока (свыше 1000 а), яркости (до 2000 Мнт) и энергетической яркости (до 12 Мвт·ср-1·м-2). Д. у. л. применяют в прожекторах и кинопроекционных аппаратах, в мощных облучательных установках (например, оптические печи). Дальнейшее совершенствование Д. у. л. идёт по пути увеличения плотности тока на аноде, продолжительности непрерывного цикла работы лампы и создания больших удобств в эксплуатации. Разрабатываются Д. у. л., работающие в инертной атмосфере и стабилизированные вихревым потоком газа.
Лит.: Карякин Н. А., Угольная дуга высокой интенсивности, М.—Л., 1948; Ласло Т. С., Оптические высокотемпературные печи, пер. с англ., М., 1968; Оптические печи, М., 1969; Finkelnburg W., Hochstrornkohlebogen, В., 1948.
Г. С. Сарычев.
Дуговая электросварка
Дугова'я электросва'рка, см. Электросварка.
Дуговой генератор
Дугово'й генера'тор, устройство, преобразующее энергию постоянного тока в электромагнитные колебания высокой частоты при помощи дугового разряда через зазор, подключённый параллельно цепи, содержащей конденсатор и катушку индуктивности (рис.). В колебательном контуре, состоящем из указанных конденсатора и катушки индуктивности и воздушного промежутка, возбуждаются и поддерживаются колебания. Манипуляция колебаний для посылки телеграфных сигналов производилась закорачиванием витков катушки индуктивности колебательного контура. Вследствие серьёзных недостатков (неустойчивости частоты генерируемых колебаний и др.) Д. г. был заменён машинными генераторами высокой частоты и затем ламповыми генераторами. См. Генератор повышенной частоты, и Генерирование электрических колебаний.
Ю. В. Любченко.
Схема дугового генератора: Др — дроссель, препятствующий проникновению токов высокой частоты в источник электрического питания с напряжением Е; А — воздушный промежуток между электродами, в котором возникает дуговой разряд; R — сопротивление потерь электрической мощности в колебательном контуре; L — катушка индуктивности; С — конденсатор; RП — резистор, ограничивающий электрический ток источника питания.
Дуговой разряд
Дугово'й разря'д, один из типов стационарного электрического разряда в газах. Впервые наблюдался между двумя угольными электродами в воздухе в 1802 В. В. Петровым и независимо в 1808—09 Г. Дэви. Светящийся токовый канал этого разряда был дугообразно изогнут, что и обусловило название Д. р.
Формированию Д. р. предшествует короткий нестационарный процесс в пространстве между электродами — разрядном промежутке. Длительность этого процесса (время установления Д. р.) обычно ~ 10-6—10-4 сек в зависимости от давления и рода газа, длины разрядного промежутка, состояния поверхностей электродов и т.д. Д. р. получают, ионизуя газ в разрядном промежутке (например, с помощью вспомогательного, так называемого поджигающего электрода). В др. случаях для получения Д. р. разогревают один или оба электрода до высокой температуры либо раздвигают сомкнутые на короткое время электроды. Д. р. может также возникнуть в результате пробоя электрического разрядного промежутка при кратковременном резком повышении напряжения между электродами. Если пробой происходит при давлении газа, близком к атмосферному, то нестационарным процессом, предшествующим Д. р., является искровой разряд.
https://teslaresearch.jimdo.com/invention-of-radio/
Изобретатель Тариель Капанадзе, родом из Грузии г. Тбилиси, изобрел генератор свободной энергии.
На видео представлен эксперимент грузинского изобретателя Тариеля Капанадзе, в котором он демонстрирует работу генератора свободной энергии на основе катушки Тесла. Запускаясь от аккумулятора, генератор продолжает работу в автономном режиме используя энергию эфира.
После демонстрации устройства Тариель дал интервью следующего содержания:
Весь космос потенциальное поле, говорит Тариэл Капанадзе, я нашёл ключ, чем могу получить энергию, энергия есть и здесь возле нас в пространстве, просто надо его открыть, и что бы эту энергию взять, нужен импульс. Недавно 9 вольтовой батарейкой дал питание, и через некоторое время устройство начало работать, после этого оно само себе даёт питание, в рабочем режиме я смог добиться до 150 киловатт энергии, но можно этот процесс усложнить, и взять больше энергии!
- Эта коробка?
- Да. Здесь производится концентрация энергии, которую я получаю из пространства.
- Можно сказать, эту энергию получаем из воздуха?
- Это эфиродинамический процесс. В своё время Эйнштейн опровергал существование эфира, позднее учёные были вынуждены удостовериться в его существовании в пространстве, и в физике появилось новое направление - эфиродинамика. Процесс получения энергии из пространства, одно из главных в эфиродинамике.
- Значит пространство, искра и секретный метод, и можно получить альтернативную энергию. Да?
- В большой точности я ничего сказать не могу, это коммерческая тайна, да и уже много противостояний у меня, украсть идею пытались уже.
- Кто заинтересовался этим?
- Здесь (в Грузии) я никого не смог заинтересовать и пошел в Турцию, и там запатентовал свой генератор, потом с турками я подписал контракт, должны были сделать 10 мегаваттную электростанцию, начал работу, а в это время показался некто Миндели, говорит, я тоже знаю об этом секрете... Много денег и нервов ушло на борьбу с ним. Я вернулся в Грузию, А Миндели сидит в Турции и думает как из пространства получить энергию. Турки снова начали контактировать со мной, но я уже не хочу смотреть туда.
- Кроме турков никто больше не заинтересовался вашим изобретением?
- Да конечно, недавно заинтересовались европейские и западные специалисты, недавно я сделал транспортную версию моего аппарата, была презентация, которая прошла на патриаршем телевидении, на ней были 3-4 эксперта из Европы, которые удостоверились, что аппарат настоящий. У Патриарха всея Грузии есть желание, что бы это изобретение осталось в Грузии, я тоже хотел, что бы Грузия получила хорошую прибыль, но со стороны правительства внимания ноль.
- Если ваше изобретение будет внедрено, каковы будут последствия?
- В первую очередь функцию потеряет "телас" (энергоком): главный принцип такой - берёшь столько энергии сколько захочешь, каждый человек сможет это устройство установить в квартиру или в подъезде. Единственное что нужно, это электропроводка и качественные детали.
- Правительство не заинтересовалось, говорите?
- 2003 году Михаил Саакашвили с Зурабом Жвания пришли ко мне домой, весь район отключили от электричества, что бы проверить эффективность моего изобретения, я телевизор и одну лампочку включил. На второй день начались аджарские новости, а сегодня никому не интересно...
- Господин Тариэл, а по профессии Вы физик?
- Физику я только в школе учил. По профессии я архитектор, на эту дорогу меня Господь привел, когда спрашивают, как родилась идея, я отвечаю, что это не моя, а Николы Теслы, был такой сербский ученый, который в Америке жил и работал.
- Что скажите о планах на будушее?
- Недавно сотруднику компании "VESTEL" сказал, дайте по одному экземпляру техники: стиральную машину, холодильник, кондиционер и другие, и в ближайшее время верну такими, что штепсель не понадобится. Могу на подобной технике установить внутри собственное энергопитание, которое заставит работать его и работать. Так что будущие планы не от меня зависят. Через несколько дней собираюсь с Патриархом встретиться, мое желание - идея здесь остаться, но из-за границы тоже есть предложения, если здесь никто так и не заинтересуется, пойду сотрудничать с автомобильным, морским, железнодорожным воздушным транспортом, хочу лабораторию создать, сегодня век знаний и информации, если может кто победить, то это ум, а ум нам Бог дал, посмотрим что будет в будущем.
Генератор 5 кВт.
Функционал
Новые технологии - бестопливный генератор Капанадзе-видео, схема, интервью с изобретателем.
Такой же генератор создан конструктором на 3 и 10 кВт.
Примерные схемы генератора
Дипл. Питер Фетт; На Schäferloch 16; D-75045 Walzbachtal / Германия
Рис. 1
Рис.1 Обозначения на станке, состоящем из 4-х деталей. Рис. 1
В этом наброске это означает:
KW = коленчатый вал с маховиком, KU1 = нижний кривошипно-шатунный привод, KU2 = верхний кривошипно-шатунный привод, M = приводная муфта
H1: цилиндр расширения, K1: цилиндр сжатия 1 -й машины
H2: цилиндр расширения, K2: цилиндр сжатия 2-й машины
H3: цилиндр расширения, K3: цилиндр сжатия 3-го двигателя . часть машины
Н4: расширение цилиндра, К4: цилиндр сжатия четвертого частичного двигателя
WH1 - VP4: внешний теплообменник для горячих цилиндров H1 - H4
WK1 - WK4: внешний охладитель для K1 холодных цилиндров - К4
Цилиндр управления RC (здесь только для холодных цилиндров K4 и K3).
Подробную информацию о контроле можно найти в разделе «Управление» в описании машины | 11 |.
Регенераторы «R» между горячим «Н» и холодным «К» цилиндрами в то же время выполнены в виде соединительных линий противоточного теплообменника.
Каждая из 4 пар цилиндров этой комплектной машины двойного действия 2 раза образует автомат. Есть 4 вспомогательных машины, каждый с расширительным цилиндром «Н», регенератором и компрессионным цилиндром «К». Эти машины обозначены как «H1-K1», «H2-K2», «H3-K3» и «H4-K4». Каждая вспомогательная машина соединена с помощью кривошипно-шатунных механизмов и поршневых штоков так, что каждый оборот коленчатого вала на 90 градусов является силовым ходом. Это делает машину самозапускающейся.
В каждой головке цилиндров имеются инжекторы для каждой холодной или горячей рабочей жидкости, которые используются для передачи тепла или охлаждения рабочего газа высокого давления.
На следующем рисунке показана 3D-модель всей машины. Все 4 цилиндра, а также головки цилиндров H1 и K1 показаны здесь прозрачными, так что поршни и пластина с соплами видны в головках цилиндров. Внешние теплообменники WH1 - WH4 и WK1 - WK4 были опущены для ясности.
Нажмите кнопку « Назад» в вашем браузере, чтобы вернуться к предыдущему тексту.
Рис. 2
Рис.2 Для пары цилиндров H1-K1: P, VG, VE, VC и VR. VC наносится отрицательно, поэтому расстояние между VE и VC снова дает общий объем VG. Мертвый объем в VE и в VC составляет 50% от ударного объема.
Нажмите кнопку « Назад» в вашем браузере, чтобы вернуться к предыдущему тексту.
Рис. 3
Рис. 3 PV диаграмма с общим объемом VG
Нажмите кнопку « Назад» в вашем браузере, чтобы вернуться к предыдущему тексту.
Рис. 3а
Рис.3a Работа расширения: d_AE, d_AC и их интегралы AE и AC
Нажмите кнопку « Назад» в вашем браузере, чтобы вернуться к предыдущему тексту.
Рис. 4
Рис.4. показывает, что интеграция от d_URE к QURE и d_URC к QURC становится более чем за 1 ход = 0.
Нажмите кнопку « Назад» в вашем браузере, чтобы вернуться к предыдущему тексту.
Рис. 4а
На рис. 4, а показаны дифференциалы работы расширения и внутренней энергии в соответствующих объемах VE и VC.
Нажмите кнопку « Назад» в вашем браузере, чтобы вернуться к предыдущему тексту.
Рис. 5
Рис.5: Крутящие моменты: DREH12, DRU1, DRU2, DREHMO
Нажмите кнопку « Назад» в вашем браузере, чтобы вернуться к предыдущему тексту.
Рис. 6
Рис.6 T - S1 Схема для изотермического процесса Стирлинга с непрерывным движением поршня для газа в качестве рабочей жидкости. Мертвый объем в VE и в VC составляет 50% от ударного объема.
Нажмите кнопку « Назад» в вашем браузере, чтобы вернуться к предыдущему тексту.
Рис. 7
Рис.7 T3 - Схема S3 для процесса Стирлинга для насыщенного пара в качестве рабочей жидкости. Мертвый объем в VE и в VC составляет 50% от ударного объема.
Нажмите кнопку « Назад» в вашем браузере, чтобы вернуться к предыдущему тексту.
Рис. 8
Рис.8 T2 - Диаграмма S2 для процесса Стирлинга с газом и насыщенным паром в качестве рабочей жидкости. Опять же, мертвый объем в VE и VC составляет 50% от ударного объема.
Нажмите кнопку « Назад» в вашем браузере, чтобы вернуться к предыдущему тексту.
Рис. 9
Рис.9 «d_Qnzd», «d_S2» и «T2» как функция угла поворота коленчатого вала для «газ + насыщенный пар» в качестве рабочей жидкости.
"d_Qnzd" = "d_Qnutz + d_Qdampf"
Нажмите кнопку « Назад» в вашем браузере, чтобы вернуться к предыдущему тексту.
Рис. 10
Рис.10 Потери мощности "VALLI", полезная мощность "POWERN", об / мин "RPM"; f 0 = 0,84 Гц; P0 = 1 бар
Нажмите кнопку « Назад» в вашем браузере, чтобы вернуться к предыдущему тексту.
Рис. 11
Рис.11. Потери мощности "VALLI", полезная мощность "POWERN", об / мин "RPM"; f 0 = 0,84 Гц; P0 = 5 бар
Нажмите кнопку « Назад» в вашем браузере, чтобы вернуться к предыдущему тексту.
Рис. 12
Фиг.12 PV диаграммы отдельных парциальных давлений рабочего тела и общего давления
Нажмите кнопку « Назад» в вашем браузере, чтобы вернуться к предыдущему тексту.
Рис. 12а
Рис.12a Общее давление "Pges1" и отдельные парциальные давления компонентов газа и насыщенного пара "P1" и "Ps1".
Нажмите кнопку « Назад» в вашем браузере, чтобы вернуться к предыдущему тексту.
Рис. 13
Рис.13: DREHMO кривая крутящего момента без, DRNUTZ кривая крутящего момента с учетом потерь на трение, POWERN - средняя мощность, относящаяся к соответствующему обороту, RPM - кривая скорости.
Нажмите кнопку « Назад» в вашем браузере, чтобы вернуться к предыдущему тексту.
Рис. 14
Рис.14: Диаграмма идеального процесса Стирлинга T2-S2 с газом и насыщенным паром в качестве рабочей жидкости. Желто-окрашенная область иллюстрирует потерю энергии при конденсации пара при V max .
Нажмите кнопку « Назад» в вашем браузере, чтобы вернуться к предыдущему тексту.