Zhou, J., Wang, H., Kato, Y., Nampally, T., Rajalakshmi, P., Balram, M., Katsura, K., Lu, H., Mu, Y., Yang, W., Gao, Y., Xiao, F., Chen, H., Chen, Y., Li, W., Wang, J., Yu, F., Zhou, J., Wang, W., Hu, X., Yang, Y., Ding, Y., Guo, W., Liu, S. 2025. Global Rice Multi-Class Segmentation Dataset (RiceSEG): A Comprehensive and Diverse High-Resolution RGB-Annotated Images for the Development and Benchmarking of Rice Segmentation Algorithms. Plant Phenomics, 7, 100099. DOI: https://doi.org/10.1016/j.plaphe.2025.100099
Kushino, S., Mizuno, N., Shirasawa, K., Kobayashi, Y., Fujita, Y., Nishimura, K., Ueno, M., Takeuchi, N., Saito, H., Adachi, S., Katsura, K., Hirakawa, H., Yasui, Y. 2025. Discovery of a novel CYP76AD1–DODA1 gene cluster associated with betalain pigmentation in quinoa. Cytologia, (in press)
Yamaguchi, T., Angeles, O., Iizumi, T., Dobermann, A., Katsura, K., Saito, K. 2025. Machine learning reveals drivers of yield sustainability in five decades of continuous rice cropping. Field Crops Res., 333, 110114. DOI: https://doi.org/10.1016/j.fcr.2025.110114
Iwasa, M., Adachi, S., Nakamura, T., Katsura, K., Motobayashi, T., Ookawa, T. 2025. Growth rate, weed competitiveness and deep-water resistance of the new type rice line, monster rice 2. Jpn. Agric. Res. Q., (in press)
Nakajima, K., Saito, K., Tsujimoto, Y., Takai, T., Mochizuki, A., Yamaguchi, T., Ibrahim, A., Mairoua, S. G., Andrianary, B. H., Katsura, K., Tanaka, Y. 2025. Robustness of the RGB image-based estimation for rice above-ground biomass by utilizing the dataset collected across multiple locations. Smart Agric. Technol., 10, 100998. DOI: https://doi.org/10.1016/j.atech.2025.100998
Sesay, S., Yamaguchi, T., Kushino, S., Yoshikawa, Y., Adachi, S., Katsura, K. 2025. Fusion of UAV-based 3D mesh and spectral features improves quinoa biomass and LAI estimation across genotypic and temporal variations. Smart Agricultural Technology, 10, 100818. DOI: https://doi.org/10.1016/j.atech.2025.100818
Yamaguchi, T., Takamura, T., Tanaka, T.S.T., Ookawa, T., Katsura, K. 2025. Study on Optimal Input Images for Rice Yield Prediction Models Using CNN with UAV Imagery and Its Reasoning Using Explainable AI. Eur. J. Agron. 164, 127512. DOI: https://doi.org/10.1016/j.eja.2025.127512
Thinley, K., Sithup, K., Choden, T., Wangmo, P., Deki, S., Dema, T., Wangmo, K., Katsura, K. 2024. Establishment of a high-yield intercropping system for maize and legumes under rainfed conditions in eastern Bhutan. Plant Prod. Sci., 27 (3), 170-184. DOI: https://doi.org/10.1080/1343943X.2024.2354544
Yamaguchi, T., Katsura, K. 2024. A novel neural network model to achieve generality for diverse morphologies and crop science interpretability in rice biomass estimation. Computers and Electronics in Agriculture, 218, 108653 DOI: https://doi.org/10.1016/j.compag.2024.108653
Yamashita, M., Kaieda, T., Toyoda, H., Yamaguchi, T., Katsura, K. 2024. Spatial estimation of daily growth biomass in paddy rice field using canopy photosynthesis model based on ground and UAV observations. Remote Sensing, 16 (1), 125 DOI: https://doi.org/10.3390/rs16010125
Yamaguchi, T., Sasano, K., Katsura, K. 2024. Improving efficiency of ground-truth data collection for UAV-based rice growth estimation models: Investigating the effect of sampling size on model accuracy. Plant Prod Sci., 27 (1), 1-13. DOI: http://dx.doi.org/10.1080/1343943X.2023.2299641
Raharimanana, V., Yamaguchi, T., Tsujimoto, Y., Oo, A. Z., Nishigaki, T., Rakotonindrina, H., Katsura, K., 2023. A machine learning approach is effective to elucidate yield-limiting factors of irrigated lowland rice under heterogeneous growing conditions and management practices. Field Crops Res., 304, 109170. DOI: https://doi.org/10.1016/j.fcr.2023.109170
Kholdorov, S., Jabbarov, Z., Yamaguchi, T., Yamashita, M., Shamsiddinov, T., Katsura, K. 2023. Optimal timing of satellite data acquisition for estimating and modeling soil salinity in cotton fields of the Mingbulak District, Uzbekistan. Eurasian Journal of Soil Science, 13 (1), 26-34. DOI: http://ejss.fesss.org/10.18393/ejss.1380500
Tanaka, Y., Watanabe, T., Katsura, K., Tsujimoto, Y., Takai, T., Tanaka, T. S. T., Kawamura, K., Saito, H., Homma, K., Mairoua, G. S., Ahouanton, K., Ibrahim, A., Senthilkumar, K., Semwal, K. V., Jose E., Matute, G., Corredor, E., El-Namaky, R., Manigbas, N., Quilang, J. P. E., Iwahashi, Y., Nakajima, K., Takeuchi, E., Saito, K. 2023. Deep learning enables instant and versatile estimation of rice yield using ground-based RGB images. Plant Phenomics, 5, 0073. DOI: https://doi.org/10.34133/plantphenomics.0073
Nakajima, K., Tanaka, Y., Katsura, K., Yamaguchi, T., Watanabe, T., Shiraiwa, T. 2023. Biomass estimation of World Rice (Oryza sativa L.) Core Collection based on the convolutional neural network and digital images of canopy. Plant Prod Sci., 26 (2), 187-196. DOI: https://doi.org/10.1080/1343943X.2023.2210767
Kholdorov, S., Gopa-kumar, L., Jabbarovb, Z., Yamaguchi, T., Yamashita, M., Samatov, N., Katsura, K. 2023. Analysis of irrigated salt-affected soils in the Central Fergana Valley, Uzbekistan, using Landsat 8 and Sentinel-2 satellite images, laboratory studies, and spectral index-based approaches, Eurasian Soil Science, 56 (8), 1178-1189. DOI: https://doi.org/10.1134/S1064229323600185
Yamaguchi, T., Ozawa, H., Maeda, S., Senoo, T., Katsura, K. 2023. Estimation of nutrient index values of ‘Kinumusume’, a recommended rice cultivar in Okayama Prefecture, using RGB images. Jpn. J. of Crop Sci. 92 (2), 129-139. (in Japanese with English abstract) DOI: https://doi.org/10.1626/jcs.92.129
Ookawa T., Nomura T., Kamahora E., Jiang, M., Ochiai, M., Samadi, A., Yamaguchi, T., Adachi, S., Katsura, K., Motobayashi, T. 2022. Pyramiding of multiple strong-culm genes originating from indica and tropical japonica to the temperate japonica rice. Scientific Reports, 12, 15400. DOI: https://doi.org/10.1038/s41598-022-19768-3
Nizamov, S., Bezborodov, G., Ziyatov, M., Katsura, K. 2022. Effects of plastic mulching on productivity and profitability of cotton (Gossypium hirsutum) in Uzbekistan. Journal of Arid Land Studies, 32-S, 67-70. DOI: https://doi.org/10.14976/jals.32.S_67
Godson-Amamoo, S., Kato, T., Katsura, K. 2022. Empirical setting of the water stressed baseline increases the uncertainty of the crop water stress index in a humid temperate climate in different water regimes. Water, 14 (12), 1833. DOI: https://doi.org/10.3390/w14121833
Mino, M., Nagayoshi, T., Katsura, K., Adachi, S., Wake, H., Ookawa, T. 2022. Effects of soil water regulation by drip irrigation on yield and dry matter production in eddoe and its ecophysiological factors. Jpn. J. of Crop Sci., 91 (4), 280-290. (in Japanese with English abstract) DOI: https://doi.org/10.1626/jcs.91.280
Appiah, K. S., Omari, R. A., Onwona-Agyeman, S., Amoatey, C. A., Ofosu-Anim, J., Arfa, A. S. A. B., Suzuki, Y., Oikawa, Y., Okazaki, S., Katsura, K., Isoda, H., Kawada, K., Fujii, Y. 2022. Seasonal changes in the plant growth-inhibitory effects of rosemary leaves on lettuce seedlings, Plants, 11(5), 673. DOI: https://doi.org/10.3390/plants11050673
Katsura, K., Kodaira, M., Yamashita, M., Yamaguchi, T., Takamura, T., Adachi, S., Ookawa, T. 2022. Assessment of the effect of rice cultivation on total soil carbon of paddy fields after decontamination in Coastal Area of Fukushima Prefecture. Journal of Reconstruction Agriculture and Sciences, 2 (1), 1-10. (in Japanese with English Abstract) DOI: https://doi.org/10.57341/jras.2.1_1
Nagatoshi, Y., Katsura, K., Toukura, Y., Yasui, Y., Fujita, Y. 2021. Addressing the global food problem with quinoa, a high adaptable and nutritious food crop. Millet Research, 36, 15-17. (in Japanese)
Hasibuan, R. F. M., Miyatake, M., Sugiura, H., Agake, S., Yokoyama, T., Bellingrath-Kimura, S. D., Katsura, K., Ohkama-Ohtsu, N. 2021. Application of biofertilizer containing Bacillus pumillus TUAT1 on soybean without inhibiting infection by Bradyrhizobium diazoefficiens USDA110. Soil Sci. Plant Nutr. 67 (5), 535-539. DOI: https://doi.org/10.1080/00380768.2021.1959837
Peprah, C. O., Yamashita, M., Yamaguchi, T., Sekino, R., Takano, K., Katsura, K. 2021. Spatio-temporal estimation of biomass growth in rice using canopy surface model by unmanned aerial vehicle images. Remote Sensing, 13, 2388. DOI: https://doi.org/10.3390/rs13122388
Honda, S., Ohkubo, S., San, N. S., Nakkasame, A., Tomisawa, K., Katsura, K., Ookawa, T., Nagano, A. J., Adachi, S. 2021. Maintaining higher leaf photosynthesis after heading stage could promote biomass accumulation in rice. Scientific Reports, 11, 7579. DOI: https://doi.org/10.1038/s41598-021-86983-9
Moritsuka, N., Matsuoka, K., Katsura, K., Sano, S., Yanai, J. 2021. Laboratory and field measurement of magnetic susceptibility of Japanese agricultural soils for rapid soil assessment. Geoderma, 393, 115013. DOI: https://doi.org/10.1016/j.geoderma.2021.115013
Yamaguchi, Y., Tanaka, Y., Imachi, Y., Yamashita, M., Katsura, K. 2021. Feasibility of combining deep learning and RGB images obtained by unmanned aerial vehicle for leaf area index estimation in rice. Remote Sensing, 13, 84. DOI: https://doi.org/10.3390/rs13010084
Tanaka, Y., Katsura, K., Yamashita, M. 2020. Verification of image processing methods using digital cameras for rice growth diagnosis, Journal of the Japan Society of Photogrammetry, 59, 248-258. (in Japanese with English abstract) DOI: https://doi.org/10.4287/jsprs.59.248
Chigira, K., Kojima, N., Yamasaki, M., Yano, K., Adachi, S., Nomura, T., Jiang, M., Katsura, K., Ookawa, T. 2020. Landraces of temperate japonica rice have superior alleles for improving culm strength associated with lodging resistance. Scientific Reports, 10, 19855. DOI: https://doi.org/10.1038/s41598-020-76949-8
Samejima, H., Katsura, K., Kikura, M., Njinju, S. M., Kimani, J., Yamauchi, A., Makihara, D. 2020. Factors explaining differences in yield response to high nitrogen fertilization among rice varieties under tropical highland conditions in central Kenya. Jpn. Agric. Res. Q., 55, 209–216. DOI: https://doi.org/10.6090/jarq.55.209
Samejima, H., Kikura, M., Katsura, K., Menge, D., Gichuhi, E., Wainaina, C., Kimani, J., Inukai, Y., Yamauchi, A., Makihara, D. 2020. A method for evaluating cold tolerance in rice during reproductive growth stages under natural low-temperature conditions in tropical highlands in Kenya. Plant Prod. Sci., 23, 297–305. DOI: https://doi.org/10.1080/1343943X.2020.1777877
Samejima,H., Katsura, K., Kikuta, M., Njinju, S. M., Kimani, J. M., Yamauchi, A., Makihara, D. 2020. Analysis of rice yield response to various cropping seasons to develop optimal cropping calendars in Mwea, Kenya. Plant Prod. Sci., 23, 297-305. DOI: https://doi.org/10.1080/1343943X.2020.1727752
Moritsuka, N., Izawa, G., Matsuoka, K., Katsura, K. 2019. Annual changes in soil fertility after ceasing fertilization in an unfertilized Paddy field and factors limiting rice growth in the field. Jap. J. Soil Sci. Plant Nutr. 90, 257–267. (in Japanese with English abstract) DOI: https://doi.org/10.20710/dojo.90.4_257
Moritsuka, N., Matsuoka, K., Katsura, K., Yanai, J. 2019. Farm-scale variations in soil color as influenced by organic matter and iron oxides in Japanese Paddy fields. Soil Sci. Plant Nutr. 65, 166–175. DOI: https://doi.org/10.1080/00380768.2019.1583542
Appiah, K. S., Peprah, C. O., Mardani, H. K., Omari, R. A., Kpabitey, S., Amoatey, C. A., Onwona-Agyeman, S., Oikawa, Y., Katsura, K., Fujii, Y. 2018. Medicinal plants used in the Ejisu-Juaben Municipality, Southern Ghana: An ethnobotanical study. Medicines, 6, 1. DOI: https://doi.org/10.3390/medicines6010001
Appiah, K. S., Mardani, H. K., Omari, R. A., Eziah, V. Y., Ofosu-Anim, J., Onwona-Agyeman, S., Amoatey, C. A., Kawada, K., Katsura, K., Oikawa, Y., Fujii, Y. 2018. Involvement of carnosic acid in the phytotoxicity of Rosmarinus officinalis leaves. Toxins, 10, 498. DOI: https://doi.org/10.3390/toxins10120498
Kawasaki, Y., Katsura, K., Shiraiwa, T. 2018. Yield and dry matter dynamics of vegetative and reproductive organs in Japanese and US soybean cultivars. Plant Prod. Sci., 21, 349–357. DOI: https://doi.org/10.1080/1343943X.2018.1512874
Nishimura, K., Moriyama, R., Katsura, K., Saito, H., Takisawa, R., Kitajima, A., Nakazaki, T. 2018. The early lowering trait of an emmer wheat accession (Triticum turgidum L. ssp. dicoccum) is associated with the cis-element of the Vrn-A3 locus. Theor. Appl. Genet. 131, 2037–2053. DOI: https://doi.org/10.1007/s00122-018-3131-5
Njinju, S. M., Samejima, H., Katsura, K., Kikuta, M., Gweyi-Onyango, J. P., Kimani, J. M., Yamauchi, A., Makihara, D. 2018. Grain yield responses of lowland rice varieties to increased amount of nitrogen fertilizer under tropical highland conditions in central Kenya. Plant Prod. Sci., 21, 59–70. DOI: https://doi.org/10.1080/1343943X.2018.1436000
Katsura, K., Watanabe, T., Moritsuka, N., Tsujimoto, Y., Inusah, B., Dogbe, W., Oda, M. 2018. Spatial variation in surface soil total carbon and its relationship with soil color in a river floodplain ecosystem of northern Ghana. Jpn. Agric. Res. Q. 52, 219–228. DOI: https://doi.org/10.6090/jarq.52.219
Tsujimoto, Y., Inusah, B., Katsura, K., Fuseini, A., Dogbe, W., Zakaria, A. I., Fujihara, Y., Oda, M., Sakagami, J. 2017. The effect of sulfur fertilization on rice yields and nitrogen use efficiency in a floodplain ecosystem of northern Ghana. Field Crops Res. 211, 155–164. DOI: https://doi.org/10.1016/j.fcr.2017.06.030
Moritsuka, N., Matsuoka, K., Katsura, K., Sano, S., Yanai, J. 2017. Estimation of total nitrogen content in Surface paddy soils by measuring their electrical conductivity after hydrogen peroxide treatment. Jap. J. Soil Sci. Plant Nutr. 88, 327–335. (in Japanese with English abstract) DOI: https://doi.org/10.20710/dojo.88.4_327
Kawasaki, Y., Tanaka, Y., Katsura, K., Purcell, L. C., Shiraiwa, T. 2016. Yield and dry matter productivity of Japanese and US soybean cultivars. Plant Prod. Sci. 19, 257–266. DOI: https://doi.org/10.1080/1343943X.2015.1133235
Katsura, K., Tsujimoto, Y., Oda, M., Matsushima, K., Inusah, B., Dogbe, W., Sakagami, J. 2016. Genotype-by-environment interaction analysis of rice (Oryza spp.) yield in a floodplain ecosystem in West Africa. Eur. J. Agron. 73, 152–159. DOI: https://doi.org/10.1016/j.eja.2015.11.014
Li, X., Kitajima, A., Katsura, K., Saito, H., Koeda, S., Takisawa, R., Kawai, T., Nakazaki, T., Shimizu, T. 2016. Cell wall related gene expression during secondary physiological fruit drop in ponkan (Citrus reticulata Blanco) and hyuganatsu (C. tamurana hort. ex Tanaka). Acta Hortic., 1135, 47–52. DOI: https://doi.org/10.17660/ActaHortic.2016.1135.6
Matsuda, M., Sakakibara, T., Katsura, K., Koeda, S. 2016. Prediction of the number of cut flowers in Anthurium andraeanum L. using a simulation model. Hort. Res. (Japan) 15, 425–431. (in Japanese with English abstract) DOI: https://doi.org/10.2503/hrj.15.425
Maki, M., Katsura, K., Oki, K. 2016. Comparison of empirical regression models for estimating LAI of paddy rice from several vegetation índices derived from UAV images. J. Remote Sensing Soc. Jap. 36, 100–106. (in Japanese with English abstract) DOI: https://doi.org/10.11440/rssj.36.100
Bajgain, R., Kawasaki, Y., Akamatsu, Y., Tanaka, Y., Kawamura, H., Katsura, K., Shiraiwa, T. 2015. Biomass production and yield of soybean grown under converted paddy fields with excess water during the early growth stage. Field Crops Res. 180, 221–227. DOI: https://doi.org/10.1016/j.fcr.2015.06.010
Hyoda, T., Homma, K., Shiraiwa, T., Katsura, K., Horie, T. 2015. Adaptability of high-yielding rice cultivars in relation to biomass productivity under moderately water stressed upland conditions. Agric. Sci. 6, 352–364. DOI: https://doi.org/10.4236/as.2015.63036
Moritsuka, N., Izawa, G., Katsura, K., Matsui, N. 2015. Simple method for measuring soil sand content by nylon mesh sieving. Soil Sci. Plant Nutr. 61, 501–505. DOI: https://doi.org/10.1080/00380768.2015.1016864
Moritsuka, N., Katsura, K., Matsuoka, K., Yanai, J. 2015. Decadal sustainability of spatial distribution of soil properties in a paddy field as a fingerprint reflecting soil forming factors and field managements. Soil Sci. Plant Nutr. 61, 516–527. DOI: https://doi.org/10.1080/00380768.2015.1012996
Moritsuka, N., Matsuoka, K., Katsura, K., Sano, S., Yanai, J. 2014. Soil color analysis for statistically estimating total carbon, total nitrogen and active iron contents in Japanese agricultural soils. Soil Sci. Plant Nutr. 60, 475–485. DOI: https://doi.org/10.1080/00380768.2014.906295
Xu, Q., Saito, H., Hirose, I., Katsura, K., Yoshitake, Y., Yokoo, T., Tsukiyama, T., Teraishi, M., Tanisaka, T., Okumoto, Y. 2014. The effects of the photoperiod-insensitive alleles, se13, hd1 and ghd7, on yield components in rice. Mol. Breed. 33, 813–819. DOI: https://doi.org/10.1007/s11032-013-9994-x
Katsura K. 2013. Agronomic traits for high productivity of rice grown in aerobic culture in progeny of a japonica cultivar and a high-yielding indica cultivar. Plant Prod. Sci. 16, 317–325. DOI: https://doi.org/10.1626/pps.16.317
Lubis, I., Ohnishi, M., Katsura, K., Shiraiwa, T. 2013. Plant factors related to dry matter production in rice cultivars. J. ISSAAS, 19, 58–67.
Katsura, K., Nakaide, Y. 2011. Factors that determine grain weight in rice under high-yielding aerobic culture: the importance of husk size. Field Crops Res. 123, 266–272. DOI: https://doi.org/10.1016/j.fcr.2011.05.023
Kato, Y., Henry, A., Fujita, D., Katsura, K., Serraj, R., Kobayashi, N. 2011. Physiological characterization of introgression lines derived from an indica rice cultivar, IR64, adapted to drought and water-saving irrigation. Field Crops Res. 123, 130–138. DOI: https://doi.org/10.1016/j.fcr.2011.05.009
Shiraiwa, T., Katsura, K., Shimada, S., Kawasaki, Y., Murata, M., Homma, K., Yoshihira, T., Tanaka, T., Tanaka, Y. 2011. Field studies on factors causing the widening gaps in soybean yield between Japan and USA. -Field crop managemein in USA- J. Crop Res. 56, 93–98. (in Japanese) DOI: https://doi.org/10.18964/jcr.56.0_93
Nakazaki, T., Moriyama, R., Kagata, H., Wakahara, H., Naito, M., Katsura, K., Saito, H., Kato, K., Nishida, H., Kawahara, T., Fudano, T., Kitajima, A. 2011. Flowering traits and their genetic basis in the ancestral tetraploid wheat varieties 'Emmer' and 'Pyramidale'. J. Crop Res. 56, 67–72. DOI: https://doi.org/10.18964/jcr.56.0_67
Kato, Y., Katsura, K. 2010. Panicle architecture and grain number in irrigated rice grown under different water management regimes. Field Crops Res. 117, 237–244. DOI: https://doi.org/10.1016/j.fcr.2010.03.006
Katsura, K., Okami, M., Mizunuma, H., Kato, Y. 2010. Radiation-use efficiency, N accumulation and biomass production of high-yielding rice in aerobic culture. Field Crops Res. 117, 81–89. DOI: https://doi.org/10.1016/j.fcr.2010.02.006
Katsura, K., Yoshihira, T., Homma, K., Purcell, L. C., Tanaka, T., Shiraiwa, T. 2009. Field studies on factors causing the widening gaps in soybean yield between Japan and USA. -Field observation reports in USA- J. Crop Res. 54, 149–154. (in Japanese) DOI: https://doi.org/10.18964/jcr.56.0_93
Kato, Y., Okami, M., Katsura, K. 2009. Yield potential and water use efficiency of aerobic rice (Oryza sativa L.) in Japan. Field Crops Res. 113, 328–334. DOI: https://doi.org/10.1016/j.fcr.2009.06.010
Katsura, K., Maeda, S., Horie, T., Shiraiwa, T. 2009. Estimation of respiratory parameters for rice based on long-term and intermittent measurement of canopy CO2 exchange rates in the field. Field Crops Res. 111, 85–91. DOI: https://doi.org/10.1016/j.fcr.2008.11.003
Katsura, K., Maeda, S., Lubis, I., Horie, T., Cao, W., Shiraiwa, T. 2008. The high yield of irrigated rice in Yunnan, China: ‘A cross-location analysis’ Field Crops Res. 107, 1–11. DOI: https://doi.org/10.1016/j.fcr.2007.12.007
Katsura, K., Maeda, S., Horie, T., Shiraiwa, T. 2007. Analysis of yield attributes and crop physiological traits of Liangyoupeijiu, a hybrid rice recently bred in China. Field Crops Res. 103, 170–177. DOI: https://doi.org/10.1016/j.fcr.2007.06.001
Yoshida, H., Horie, T., Katsura, K., Shiraiwa, T. 2007. A model explaining genotypic and environmental variation in leaf area development of rice based on biomass growth and leaf N accumulation. Field Crops Res. 102, 228–238. DOI: https://doi.org/10.1016/j.fcr.2007.04.006
Katsura, K., Maeda, S., Horie, T., Shiraiwa., T. 2006. A multichannel automated chamber system for continuous measurement of carbon exchange rate of rice canopy. Plant Prod. Sci. 9, 152–155. DOI: https://doi.org/10.1626/pps.9.152
Sekiya, N., Oizumi, N., Kessy, T. T., Fimbo, K. M. J., Tomitaka, M., Katsura, K., Araki, H., 2020. Importance of market-oriented research for rice production 1 in Tanzania. A review. Agron. Sustain. Dev., 40, 7. DOI: https://doi.org/10.1007/s13593-020-0611-1
Kato, Y., Katsura, K. 2014. Rice adaptation to aerobic soils: physiological considerations and implications for agronomy. Plant Prod. Sci. 17, 1–12. DOI: https://doi.org/10.1626/pps.17.1
Horie, T., Shiraiwa, T., Homma, K., Katsura, K., Maeda, S., Yoshida, H. 2005. Can yields of lowland rice resumes the increases that they showed in the 1980s? Plant Prod. Sci. 8, 259–274. DOI: https://doi.org/10.1626/pps.8.259
Peprah, C.O., Yamaguchi, T.,Ghanney, P., Katsura, K., Aduhene-chinbuah, J., Asante, M. D., 2025. GIS and remote sensing applications in rice cultivation. In: Srivastava et al., (eds) Rice Cultivation Under Abiotic Stress. Challenges and Opportunities. Elsevier, pp347-362.
Makihara, D. Kimani, J., Samejima, H., Kikuta, M., Menge, D., Doi, K., Inukai, Y., Maekawa, M., Masunaga, T., Sasaki, Y., Katsura, K., Kitano, H., Mitsuya, S., Kano-Nakata, M., Wainaina, C., Gichuhi, E., Njinju, S., Kagito, S., Magoti, R., Kundu, C., Yamauchi, A. 2018. Development of Rice Breeding and Cultivation Technology Tailored for Kenya’s Environment. In: Kokubun, M., Asanuma S. (eds) Crop Production under Stressful Conditions. Springer, Singapore. pp. 27–47.
Oikawa, Y., Dung, P. Q., Dan, P. V. B., Linh, N. V., Yamada, M., Hayashidani, H., Tanaka, H., Tarao, M., Katsura, K. 2018. Charcoal application farming with livestock for small scale farmers in central Vietnam. Agroecology for Food Security and Nutrition, Proc. of the International Symposium on Agroecology in China, FAO, Rome, Italy, pp 197–210.
桂圭佑 2015. 第9章 中国雲南省の超多収稲作. 堀江武編著, アジア・アフリカの稲作―多様な生産生態と持続的発展への道. pp212–227. 農山漁村文化協会
島田信二・白岩立彦・桂圭佑・島村総 2013. 第5章 日米における大豆生産技術の現状とわが国の課題. 梅本雅・島田信二編著, 大豆生産振興の課題と方向. pp69–131. 農林統計出版
Horie, T., Yoshida, H., Kawatsu, S., Katsura, K., Homma, K., Shiraiwa, T. 2005. Effects of elevated atmospheric CO2 concentration and increased temperature on rice; Implications for Asian rice production. In: Toriyama, K. et al. (Eds.), Rice is Life: Scientific Perspectives for the 21st Century. Proc. of the World Rice Research Conference held in Tokyo and Tsukuba, Japan, 4-7 November 2004, IRRI, Los Baños, and JIRCAS, Tsukuba, 536–539.
Horie, T., Lubis, I., Takai, T., Ohsumi, A., Kuwasaki, K., Katsura, K., Nii, A. 2003. Physiological traits associated with high yield potential in rice. In Mew, T. W. et al. (Eds.), Rice Science: Innovations and impact for livelihood. Proc. Int. Rice Res. Conf., Sept. 2002, Beijing, China. IRRI, Chinese Academy of Engineering and Chinese Academy of Agricultural Sciences. 117–145. DOI: https://doi.org/10.1016/S0378-4290(96)03458-2
Copy right (C) Lab. of Crop Production Science, Tokyo University of Agriculture and Technology