PUBLICATIONS

List of Publications

Summary: over 80 articles including 1 Nature Nano., 1 Physics Reports, 1 Nature Phys., 1 Science Adv., 1 Nature Comm., 

                  10 Phys. Rev. Lett., 3 Nano Lett., 1 NPJ Comput. Mater., 1 NPG Asia Mater., 1 Commun. Phys., 2 Sci. Rep.,

                  32 Phys. Rev. B, 10 Appl. Phys. Lett., 2 Phys. Rev. Res., 1 Phys. Rev. Appl., 1 ACS Appl. Energy Mater., and 

                  1 ACS Appl. Electron. Mater.

85. X. Zhang, J. Xia, Oleg A. Tretiakov, M. Ezawa, G. Zhao, Y. Zhou, X. Liu, and M. Mochizuki, Chiral Skyrmions Interacting with Chiral Flowers,
Nano Letters 23, 11793 (2023); arXiv:2309.10338.

84. M.-G. Han, F. Camino, P. Vorobyev, J. Garlow, R. Rov, T. Sohnel, J. Seidel, M. Mostovoy, Oleg A. Tretiakov, Y. Zhu, Hysteretic responses of skyrmion lattices to electric fields in magnetoelectric Cu2 OSeO3,

Nano Letters 23, 7143 (2023).

83. X. Zhang, J. Xia, Oleg A. Tretiakov, G. Zhao, Y. Zhou, M. Mochizuki, X. Liu, and M. Ezawa, Reversible magnetic domain reorientation induced by magnetic field pulses of fixed direction, 

Physical Review B 108, 064410 (2023); arXiv:2307.15263.

82. X. Zhang, J. Xia, Oleg A. Tretiakov, M. Ezawa, G. Zhao, Y. Zhou, X. Liu, and M. Mochizuki, Laminar and transiently disordered dynamics of magnetic-skyrmion pipe flow,
Physical Review B 108, 144428 (2023); arXiv:2305.13590.

81. J. Sauceda Flores, R. Rov, J. O'Brien, S. Yick, Md. F. Pervez, M. Spasovski, J. Vella, N. Booth, E. P. Gilbert, Oleg A. Tretiakov, T. Sohnel, and C. Ulrich, Scaling behaviour of the helical and skyrmion phases of Cu2OSeO3 determined by single crystal small angle neutron scattering,

arXiv:2303.02653 (2023).

80. A. Yu. Samardak, A. G. Kolesnikov, M.E. Stebliy, A. V. Gerasimenko, A. V. Sadovnikov, S. A. Nikitov, A. A. Pervishko, D. Yudin, A. V. Ognev, Oleg A. Tretiakov, C. H. Wan, X. F. Han, and A. S. Samardak, Thermal annealing driven enhancement of perpendicular magnetic anisotropy and the interfacial Dzyaloshinskii-Moriya interaction in ultrathin Ru/Co/W/Ru films,

ACS Applied Electronic Materials 5, 2799 (2023).

79. S. S. Apostoloff, E. S. Andriyakhina, P. A. Vorobyev, Oleg A. Tretiakov, and I. S. Burmistrov, Chirality inversion and radius blow-up of a Neel-type skyrmion by a Pearl vortex

Physical Review B 107, L220409 (2023); arXiv:2212.08351.

78. O. J. Amin, S. F. Poole, S. Reimers, L. X. Barton, F. Maccherozzi, S. S. Dhesi, V. Novak, F. Krızek, J. S. Chauhan, R. P. Campion, A. W. Rushforth, T. Jungwirth, Oleg A. Tretiakov, K. W. Edmonds, and P. Wadley, Antiferromagnetic half-skyrmions electrically generated and controlled at room temperature,

Nature Nanotechnology 18, 849 (2023); arXiv:2207.00286.

77. X. Zhang, J. Xia, Oleg A. Tretiakov, H. T. Diep, G. Zhao, J. Yang, Y. Zhou, M. Ezawa, and X. Liu, Current-Induced Helicity Switching of Frustrated Skyrmions on a Square-Grid Obstacle Pattern

Journal of the Magnetics Society of Japan 47, 20 (2023).

Best Paper Award given by the Magnetics Society of Japan.

76. Sayak Dasgupta and Oleg A. Tretiakov, Tuning the Hall response of a non-collinear antiferromagnet with spin-transfer torques,

Physical Review Research 4, L042029 (2022); arXiv:2202.06882.

75. O. Busel, O. Gorobets, and Oleg A. Tretiakov, Spin Wave Propagation through Antiferromagnet/Ferromagnet Interface,

submitted to Physical Review B (2022); arXiv:2112.14583.

74. Daichi Kurebayashi and Oleg A. Tretiakov, Skyrmion nucleation on the surface of a topological insulator,

Physical Review Research 4, 043105 (2022); arXiv:2112.12967.

73. K. Ohara, Y. Chen, J. Xia, M. Ezawa, Oleg A. Tretiakov, Z. Hou, Y. Zhou, G. Zhao, J. Yang, X. Liu, Reversible Transformation between Isolated Skyrmions and Bimerons,

Nano Letters 22, 8559  (2022).

Highlighted in Phys.org, TodayUKNews, AzoNano, ScienceNewsNet, Newswise, etc.

72. J. Xia, X. Zhang, Oleg A. Tretiakov, H. T. Diep, J. Yang, G. Zhao, M. Ezawa, Y. Zhou, and X. Liu, Bifurcation of a Topological Skyrmion String,

Physical Review B 105, 214402 (2022); arXiv:2205.09258.

71. L. Shen, J. Xia, Z. Chen, X. Li, X. Zhang, Oleg A. Tretiakov, Q. Shao, G. Zhao,  X. Liu, M. Ezawa, and Y. Zhou, Nonreciprocal dynamics of ferrimagnetic bimerons,

Physical Review B 105, 014422 (2022); arXiv:2201.03781.

70. X. Zhang, J. Xia, Oleg A. Tretiakov, H. T. Diep, G. Zhao, J. Yang, Y. Zhou, M. Ezawa, and X. Liu, Dynamic Transformation Between a Skyrmion String and a Bimeron String in a Layered Frustrated System,

Physical Review B 104, L220406 (2021); arXiv:2108.01365.

69. X. Zhang, J. Xia, K. Shirai, H. Fujiwara, Oleg A. Tretiakov, M. Ezawa, Y. Zhou, and X. Liu, Configurable pixelated skyrmions on nanoscale magnetic grids,

Communications Physics 4, 255 (2021); arXiv:2108.01261.

68. L. Shen, X. Liang, J. Xia, X. Zhang, M. Ezawa, Oleg A. Tretiakov, and Y. Zhou, Antiferromagnetic Skyrmions and Bimerons, chapter in 

Springer Book "Chirality, Magnetism, and Magnetoelectricity: Separate Phenomena and Joint Effects in Metamaterial Structures," Edited by E. Kamenetskii, 138, 441-457 (2021).

67. A. Novitskii, I. Serhiienko, S. Novikov, Y. Ashim, M. Zheleznyi, K. Kuskov, D. Pankratova, P. Konstantinov, A. Voronin, Oleg A. Tretiakov, T. Inerbaev, A. Burkov, and V. Khovaylo, Influence of Bi Substitution with Rare-Earth Elements on the Transport Properties of BiCuSeO Oxyselenides,

ACS Applied Energy Materials 5, 7830 (2022); arXiv:2104.10509.

66. Oleg A. Tretiakov, Skyrmions in Antiferromagnets, chapter in 

Elsevier Book “Magnetic Skyrmions and Their Applications,” Edited by G. Finocchio and C. Panagopoulos (2021).

65.  J. Xia, X. Zhang, K. Mak, M. Ezawa, Oleg A. Tretiakov, Y. Zhou, G. Zhao, and X. Liu, Current- induced dynamics of skyrmion tubes in synthetic antiferromagnetic multilayers,

Physical Review B 103, 174408 (2021); arXiv:2102.01252

Selected as an Editors' Suggestion.

64. R. R. Chowdhury, S. DuttaGupta, C. Patra, Oleg A. Tretiakov, S. Sharma, S. Fukami, H. Ohno, R. P. Singh, Unconventional Hall effect and its variation with Co-doping in van der Waals Fe3GeTe2,

Scientific Reports 11, 14121 (2021); arXiv:2011.11269.

63. L. Shen, J. Xia, M. Ezawa, Oleg A. Tretiakov, G. Zhao, Y. Zhou, Signal detection based on the chaotic motion of an antiferromagnetic domain wall, 

Applied Physics Letters 118, 012402 (2021); arXiv:2011.01481.

Highlighted in Phys.org.

62. S. DuttaGupta, A. Kurenkov, Oleg A. Tretiakov, G. Krishnaswamy, G. Sala, V. Krizakova, F. Machherozzi, S. S. Dhesi, P. Gambardella, H. Ohno, and S. Fukami, Spin-orbit torque switching of an antiferromagnetic metallic heterostructure,

Nature Communications 11, 5715 (2020).

Highlighted in ScienceDaily, SCIENMAG, Bioengineer.org, and Asia Research News.

61. X. Zhang, J. Xia, M. Ezawa, Oleg A. Tretiakov, H. T. Diep, G. Zhao, X. Liu, and Y. Zhou, A Frustrated Bimeronium: Static Structure and Dynamics, 

Applied Physics Letters 118, 052411 (2021); arXiv:2010.10822.

60. L. Shen, Xiaoguang Li, J. Xia, L. Qiu, X. Zhang, Oleg A. Tretiakov, M. Ezawa, Y. Zhou, Dynamics of ferromagnetic bimerons driven by spin currents and magnetic fields,

Physical Review B 102, 104427 (2020); arXiv:2005.11924.

59. A. S. Samardak, A. V. Davydenko, A. G. Kolesnikov, A. Yu. Samardak, A. G. Kozlov, B. Pal, A. V. Ognev, A. V. Sadovnikov, S. A. Nikitov, A. V. Gerasimenko, I. H. Cha, Y. J. Kim, Oleg A. Tretiakov, and Young Keun Kim, Enhancement of perpendicular magnetic anisotropy and Dzyaloshinskii-Moriya interaction in thin ferromagnetic films by atomic-scale modulation of interfaces

NPG Asia Materials 12, 51 (2020); arXiv:2005.10584.

Highlighted in Nanotechnology Now and Naked Science

58. Börge Göbel, Ingrid Mertig, and Oleg A. Tretiakov, Beyond skyrmions: Review and perspectives of alternative magnetic quasiparticles

Physics Reports 895, 1 (2021); arXiv:2005.01390.

57. J. Xia, X. Zhang, M. Ezawa, Oleg A. Tretiakov, Z. Hou, W. Wang, G. Zhao, X. Liu, H. T. Diep, and Y. Zhou, Current-driven skyrmionium in a frustrated magnetic system,

Applied Physics Letters 117, 012403 (2020); arXiv:2005.01403.

56. X. Li, L. Shen, Y. Bai, X. Zhang, J. Xia, M. Ezawa, Oleg A. Tretiakov, X. Xu, M. Mruczkiewicz, M. Krawczyk, Y. Xu, R.F.L. Evans, R.W. Chantrell, and Y. Zhou, Bimeron Clusters in Chiral Antiferromagnets

NPJ Computational Materials 6, 169 (2020); arXiv:2002.04387.

Highlighted in Phys.org.

55. X. Zhang, J. Xia, L. Shen, M. Ezawa, Oleg A. Tretiakov, G. Zhao, X. Liu, and Y. Zhou, Static and Dynamic Properties of Bimerons in a Frustrated Ferromagnetic Monolayer, 

Physical Review B 101, 144435 (2020); arXiv:2002.00312.

Highlighted in Phys.org.

54. H.-A. Zhou, Y. Dong, T. Xu, K. Xu, L. Sanchez-Tejerina, L. Zhao, Y.Ba, P. Gargiani, M. Valvidares, Y. Zhao, M. Carpentieri, Oleg A. Tretiakov, X. Zhong, G. Finocchio, S. K. Kim, and Wanjun Jiang, Compensated magnetic insulators for extremely fast spin-orbitronics

submitted to Physical Review B (2022); arXiv:1912.01775.

53. X. Liang, J. Xia, X. Zhang, M. Ezawa, Oleg A. Tretiakov, X. Liu, L. Qiu, G. Zhao, and Y. Zhou, Antiferromagnetic Skyrmion-Based Logic Gates Controlled by Electric Currents and Fields

Applied Physics Letters 119, 062403 (2021); arXiv:1909.10709.

52. C. A. Akosa, H. Li, Gen Tatara, and Oleg A. Tretiakov, Tuning skyrmion Hall effect via engineering of spin-orbit interaction,

Physical Review Applied 12, 054032 (2019); arXiv:1907.05196

51. M. N. Potkina, I. S. Lobanov, Oleg A. Tretiakov, H. Jonsson, and V. M. Uzdin, Stability of long-lived antiskyrmions in the Mn-Pt-Sn tetragonal Heusler material,

Physical Review B 102, 134430 (2020); arXiv:1906.06383

50. L. Shen, J. Xia, X. Zhang, M. Ezawa, Oleg A. Tretiakov, X. Liu, G. Zhao, and Y. Zhou, Current- Induced Dynamics and Chaos of Antiferromagnetic Bimerons,

Physical Review Letters 124, 037202 (2020); arXiv:1905.09007.

Highlighted in Phys.org.

49. S. Albarakati, C. Tan, Z.-J. Chen, J. G. Partridge, G. Zheng, L. Farrar, E. L.H. Mayes, M. R. Field, C. Lee, Y. Wang, Y. Xiong, M. Tian, F. Xiang, A. R. Hamilton, Oleg A. Tretiakov, D. Culcer, Y.-J. Zhao, L. Wang, Antisymmetric magnetoresistance in van der Waals Fe3GeTe2/graphite/Fe3GeTe2 trilayer heterostructures

Science Advances 5, no. 7, eaaw0409 (2019); arXiv:1904.10588.

Highlighted in Phys.org, Materials Today, Nanowerk, and EurekAlert.

48. P. F. Bessarab, D. Yudin, D. R. Gulevich, P. Wadley, M. Titov, and Oleg A. Tretiakov, Stability and lifetime of antiferromagnetic skyrmions, 

Physical Review B 99, 140411(R) (2019); arXiv:1709.04454.

47. B. Gobel, A. Mook, J. Henk, I. Mertig, and Oleg A. Tretiakov, Magnetic bimerons as skyrmion analogues in in-plane magnets

Physical Review B 99, 060407(R) (2019); arXiv:1811.07068.

46. V. V. Slastikov, C. B. Muratov, J. B. Robbins, and Oleg A. Tretiakov, Walker Solution for Dzyaloshinskii Domain Wall in Ultrathin Ferromagnetic Films,

Physical Review B 99, 100403(R) (2019); arXiv:1808.03772.

45. Ch. Gritsenko, I. Dzhun, M. Volochaev, M. Gorshenkov, G. Babaytsev, N. Chechenin, A. Sokolov, Oleg A. Tretiakov, and V. Rodionova, Temperature-Dependent Magnetization Reversal in Exchange Bias NiFe/IrMn/NiFe Structures

Journal of Magnetism and Magnetic Materials 482, 370 (2019); arXiv:1811.09963.

44. L. Shen, J. Xia, G. Zhao, X. Zhang, M. Ezawa, Oleg A. Tretiakov, X. Liu, and Y. Zhou, Spin torque nano-oscillators based on antiferromagnetic skyrmions

Applied Physics Letters 114, 042402 (2019), Featured Article; arXiv:1811.02869.

Highlighted in Scilight 2019, 050004 (2019).

43. K. Gritsenko, A. Omelyanchik, A. Berg, I. Dzhun, N. Chechenin, O. Dikaya, Oleg A. Tretiakov, and V. Rodionova, Inhomogeneous Magnetic Field Influence on Magnetic Properties of NiFe/IrMn Thin Film Structures

Journal of Magnetism and Magnetic Materials 475, 763 (2019); arXiv:1811.02941.

42. L. Shen, J. Xia, G. Zhao, X. Zhang, M. Ezawa, Oleg A. Tretiakov, X. Liu, and Y. Zhou, Dynamics of Antiferromagnetic Skyrmion Induced by a Magnetic Anisotropy Gradient, 

Physical Review B 98, 134448 (2018); arXiv:1808.08664.

41. A. G. Kolesnikov, V. S. Plotnikov, E. V. Pustovalov, A. S. Samardak, L. A. Chebotkevich, A. V. Ognev, and Oleg A. Tretiakov, Composite topological structure of domain walls in synthetic antiferromagnets

Scientific Reports 8, 15794 (2018); arXiv:1710.10968.

40. C. A. Akosa, O. A. Tretiakov, G. Tatara, and A. Manchon, Theory of the Topological Spin Hall Effect in Antiferromagnetic Skyrmions: Impact on Current-Induced Motion, 

Physical Review Letters 121, 097204 (2018); arXiv:1709.02931.

39. C. B. Muratov, V. V. Slastikov, A. G. Kolesnikov, and Oleg A. Tretiakov, Theory of Dzyaloshinskii domain-wall tilt in ferromagnetic nanostrips

Physical Review B 96, 134417 (2017); arXiv:1706.07135

38. A. De Lucia, K. Litzius, B. Kruger, Oleg A. Tretiakov, and Mathias Klaui, Multiscale simulations of topological transformations in magnetic-skyrmion spin textures

Physical Review B 96, 020405(R) (2017); arXiv:1702.05767.

37. D. R. Rodrigues, K. Everschor-Sitte, Oleg A. Tretiakov, J. Sinova, and Ar. Abanov, Spin texture motion in antiferromagnetic and ferromagnetic nanowires

Physical Review B 95, 174408 (2017); arXiv:1702.06274

36. Oleg A. Tretiakov, M. Morini, S. Vasylkevych, V. Slastikov, Engineering curvature-induced anisotropy in thin ferromagnetic films, 

Physical Review Letters 119, 077203 (2017); arXiv:1610.05574.

35. I. A. Ado, Oleg A. Tretiakov, and M. Titov, Microscopic theory of spin-orbit torques in two dimensions

Physical Review B 95, 094401 (2017); arXiv:1603.07994.

34. K. Litzius, I. Lemesh, B. Kruger, P. Bassirian, L. Caretta, K. Richter, F. Buttner, K. Sato, Oleg A. Tretiakov, J. Forster, R. M. Reeve, M. Weigand, I. Bykova, H. Stoll, G. Schutz, G. S. D. Beach, and Mathias Klaui, Skyrmion Hall Effect Revealed by Direct Time-Resolved X-Ray Microscopy,

Nature Physics 13, 170 (2017); arXiv:1608.07216.

Highlighted in Nature News & Views (Nature Phys. 13, 122 (2017)), ScienceDaily.com, Phys.org, and Nanotechweb.org

33. A. De Lucia, B. Kruger, Oleg A. Tretiakov, and Mathias Klaui, Multiscale model approach for magnetization dynamics simulations

Physical Review B 94, 184415 (2016); arXiv:1609.09295.

32. K. D. Belashchenko, O. Tchernyshyov, A. A. Kovalev, and Oleg A. Tretiakov, Magnetoelectric domain wall dynamics and its implications for magnetoelectric memory,

Applied Physics Letters 108, 132403 (2016); arXiv:1601.02471.

31.U. Gungordu, R. Nepal, Oleg A. Tretiakov, K. Belashchenko, and A. A. Kovalev, Stability of skyrmion lattices and symmetries of quasi-two-dimensional chiral magnets,

Physical Review B 93, 064428 (2016); arXiv:1510.04262.

30.K. Sato and Oleg A. Tretiakov, Electrically controlled pinning of Dzyaloshinskii-Moriya domain walls,

Applied Physics Letters 108, 122403 (2016); arXiv:1507.07285.

29. J. Barker and Oleg A. Tretiakov, Static and Dynamic Properties of Antiferromagnetic Skyrmions in the Presence of Applied Current and Temperature,

Physical Review Letters 116, 147203 (2016); arXiv:1505.06156. 

28.A. Goussev, J. M. Robbins, V. Slastikov, and Oleg A. Tretiakov, Dzyaloshinskii-Moriya domain walls in magnetic nanotubes,

Physical Review B 93, 054418 (2016); arXiv:1504.01613.

27.A. B. Cahaya, Oleg A. Tretiakov, and G. E. W. Bauer, Spin Seebeck Power Conversion

Invited review in IEEE Transactions on Magnetics 51, 0800414 (2015); arXiv:1504.02002.

26.O. A. Tretiakov and Ar. Abanov, Topologically protected dynamics of spin textures

 Journal of Magnetism and Magnetic Materials 383, 65 (2015); arXiv:1501.05366.

25.A. B. Cahaya, O. A. Tretiakov, and Gerrit E. W. Bauer, Spin Seebeck Power Generators

Applied Physics Letters 104, 042402 (2014); arXiv:1311.6195.

24.Dashdeleg Baasanjav, O. A. Tretiakov, and Kentaro Nomura, Magnetoelectric effect in topological insulator films beyond the linear response regime,

Physical Review B 90, 045149 (2014); arXiv:1306.1414.

23.O. A. Tretiakov, K. S. Tikhonov, and V. L. Pokrovsky, Spin resonance in a Luttinger liquid with spin-orbit interaction,

Physical Review B 88, 125143 (2013); arXiv:1303.4149.

22.E. G. Tveten, A. Qaiumzadeh, O. A. Tretiakov, and Arne Brataas, Staggered Dynamics in Antiferromagnets by Collective Coordinates,

Physical Review Letters 110, 127208 (2013); arXiv:1210.0429.

21.O. A. Tretiakov, Ar. Abanov, and Jairo Sinova, Thermoelectric efficiency of topological insulators in a magnetic field,

Journal of Applied Physics 111, 07E319 (2012); arXiv:1110.5964.

20.O. A. Tretiakov, Y. Liu, and Ar. Abanov, Domain-wall dynamics in translationally noninvariant nanowires: theory and applications,

Physical Review Letters 108, 247201 (2012); arXiv:1109.2996.

19.O. A. Tretiakov, Ar. Abanov, and Jairo Sinova, Holey topological thermoelectrics,     Applied Physics Letters 99, 113110 (2011); arXiv:1107.0006.

18.O. A. Tretiakov and Jairo Sinova, Topological thermoelectrics,             

TECHCON 2011 Proceedings (2011).

17.Y. Liu, O. A. Tretiakov, and Ar. Abanov, Electric signature of magnetic domain-wall dynamics

Physical Review B 84, 052403 (2011); arXiv:1102.5459.

16.O. A. Tretiakov, Y. Liu, and Ar. Abanov, Power optimization for domain wall motion in ferromagnetic nanowires,

Journal of Applied Physics 109, 07D505 (2011); arXiv:1010.1537.

15.Shuichi Murakami, Ryuji Takahashi, O. A. Tretiakov, Ar. Abanov, and Jairo Sinova, Thermoelectric transport of perfectly conducting channels in two- and three-dimensional topological insulators, 

Journal of Physics: Conference Series 334, 012013 (2011); arXiv:1010.2304.

14.O. A. Tretiakov, Ar. Abanov, Shuichi Murakami, and Jairo Sinova, Large thermoelectric figure of merit for three-dimensional topological Anderson insulators via line dislocation engineering,

Applied Physics Letters 97, 073108 (2010); arXiv:1007.2966.

Highlighted in Nature Materials 9, 786 (2010).

13.O. A. Tretiakov, Y. Liu, and Ar. Abanov, Minimization of Ohmic losses for domain wall motion

in a ferromagnetic nanowire,

Physical Review Letters 105, 217203 (2010); arXiv:1006.0725

Selected as an Editors' Suggestion and highlighted with a Viewpoint in Physics 3, 96 (2010).

12.O. A. Tretiakov and Ar. Abanov, Current driven magnetization dynamics in ferromagnetic nanowires with a Dzyaloshinskii-Moriya interaction,

Physical Review Letters 105, 157201 (2010); arXiv:0912.4732.

11.O. A. Tretiakov and A. Mitra, AC- and DC-driven noise and I-V characteristics of magnetic nanostructures,

Physical Review B 81, 024416 (2010); arXiv:0908.2483.

10.D. J. Clarke, O. A. Tretiakov, G.-W. Chern, Ya. B. Bazaliy, and O. Tchernyshyov, Dynamics of a vortex domain wall in a magnetic nanostrip: an application of the collective coordinate approach

Physical Review B 78, 134412 (2008); arXiv:0806.3283.

9.D. Clarke, G.-W. Chern, O. A. Tretiakov, and O. Tchernyshyov, Dynamics of a domain wall in a magnetic nanostrip: a toy model,

arXiv:0705.4465.

8.O. A. Tretiakov, D. Clarke, Gia-Wei Chern, Ya. B. Bazaliy, and O. Tchernyshyov, Dynamics of domain walls in magnetic nanostrips,

Physical Review Letters 100, 127204 (2008); arXiv:0705.4463.

7.D. Clarke, O. A. Tretiakov, and O. Tchernyshyov, Stripes in thin ferromagnetic films with out-of-plane anisotropy, 

Physical Review B 75, 174433 (2007); arXiv:cond-mat/0612346.  

Featured in PRB Kaleidoscope.

6.O. A. Tretiakov and O. Tchernyshyov, Vortices in thin ferromagnetic films and the skyrmion number,

Physical Review B 75, 012408 (2007); arXiv:cond-mat/0611392.

5.Y. L. Iunin, Y. P. Kabanov, V. I. Nikitenko, X. M. Cheng, D. Clarke, O. A. Tretiakov, O. Tchernyshyov, A. J. Sharpiro, R. D. Shull, and C. L. Chien, Asymmetric domain nucleation and unusual magnetization reversal in ultrathin Co films with perpendicular anisotropy,

Physical Review Letters 98, 117204 (2007).

4.O. A. Tretiakov and K. A. Matveev, Decay of metastable current states in one-dimensional resonant tunneling devices,

Physical Review B 73, 115302 (2006); arXiv:cond-mat/0601717.

3.O. A. Tretiakov and K. A. Matveev, Stochastic current switching in bistable resonant tunneling systems,

Physical Review B 71, 165326 (2005); arXiv:cond-mat/0411075.

2.O. A. Tretiakov and K. A. Matveev, Reply to "Comment on `Lifetime of metastable states in resonant tunneling structures'",

Physical Review B 71, 047302 (2005).

1.O. A. Tretiakov, T. Gramespacher, and K. A. Matveev, Lifetime of metastable states in resonant tunneling structures,

Physical Review B 67, 073303 (2003); arXiv:cond-mat/0209479.