The extended Wilfried Buchholz’s functions are my extension of original Buchholz’s functions and were created in April 2017. In the same month I also defined the fundamental sequences, which you can see above, and much later, in July 2020, developed the ordinal notation, which is below.
We assume that <...> is a primitive recursive coding function on finite sequences of natural numbers.
1. Definition of set T
1. 0∈T
2. If α_1,…,α_n ∈ T then <1,α_1,…,α_n> ∈ T
3. If α, β ∈ T then <2,α,β> ∈ T
2. Definition of V:On→T
1. V(0) = 0
2. V(α_1+…+ α_n) = <1,V(α_1),…,V( α_n)>
3. V(ψ_α(β)) = <2,V(α),V(β)>
3. Definition of o:T→On
1. o(0) = 0
2. o(<1,α_1,…,α_n> ) = o(α_1)+…+o(α_n)
3. o(<2,α,β>) = ψ_{o(α)}(o(β))
4. Conventions
1. 1’ is an abbreviation of <2,0,0>
2. ω’ is an abbreviation of <2,0,<2,0,0>>
3. <α_1,…,α_m> = <β_1,…,β_n> ⇔ m = n and α_i = β_i for 1 ≤ i ≤ n
4. α ⊴ β ⇔ α ⊲ β or α = β
5. Definition of ⊗
α⊗η = 0 if η = 0
α⊗η = α if η = 1
α⊗η = <1,α,…,α> with η α's if η ≥ 2
Below we simultaneously define:
1. Sets of terms OT, P,
2. Coefficient sets G_ν(α) for α,ν∈OT,
3. A linear ordering ⊲ on OT.
6. Definition of sets OT, P:
1. If α=0 then α∈OT
2. If α=<1,α_1,...,α_n> and n≥2 and α_1,...,α_n ∈ P and α_n ⊴ … ⊴ α_1 ⊲ α then α∈OT
3. If α=<2,ν,β> and ν,β∈OT and G_ν(β) ⊲ β then α∈OT and α∈P
7. Definition of G_ν(α) for α,ν∈OT
1. G_ν(0)=∅
2. G_ν(<1,α_1,…,α_n>) = G_ν(α_1) ∪… ∪ G_ν(α_n)
3. G_ν(<2,μ,β>) = ∅ if μ ⊲ ν
4. G_ν(<2,μ,β>) = {β} ∪ G_ν(μ) ∪ G_ν(β) if ν ⊴ μ
G_ν(β) ⊲ β ⇔ o(β)∈C_{o(ν)}(o(β))
Note: G_ν(β) ⊲ β abbreviates “γ⊲β for all γ∈G_ν(β)”
8. Definition of ⊲ for OT
All terms are supposed to be elements of OT.
a) 0 ⊲ α if 1’ ⊴ α.
b) <2,ν,α> ⊲ <2,μ,β> iff one of the following cases holds:
1. ν ⊲ μ,
2. ν = μ and α ⊲ β.
c) <1,α_1,…,α_m> ⊲ <1,β_1,…,β_n> (2 ≤ m, 2 ≤ n) iff one of the following cases holds:
1. m < n and α_i = β_i for 1 ≤ i ≤ m,
2. there exists a k such that 1 ≤ k ≤ min{m,n} and α_k ⊲ β_k and α_i = β_i for 1 ≤ i < k.
d) Let β = <2,γ,δ>. Then
1. <1,α_1,…,α_k> ⊲ β if α_1 ⊲ β,
2. β ⊲ <1,α_1,…,α_k> if β ⊴ α_i for some 1 ≤ i ≤ k.
Note: α⊲β and α,β∈OT ⇔ o(α)<o(β)
9. Definition of fundamental sequences for α∈OT
1. If α =0 then R(α)=0 and α hasn’t a fundamental sequence.
2. If α=<2,0,0> then R(α)= α=1’ and α[0]=0.
3. If α=<2,β,0> with R(β)=1' then R(α)=α and α[η]=η.
4. If α=<2,β,0> and R(β)∉{0,1’} then R(α)=R(β) and α[η] =<2,β[η],0>.
5. If α = <1,α_1,…,α_k> and k≥2 then R(α) = R(α_k) and
α[η] = <1,α_1,…,α_k[η]> if α_k[η] = <2,β,γ>,
α[η] = <1,α_1,…,α_{k-1},β_1,…,β_m> if α_k[η] = <1,β_1,…,β_m>,
α[η] = <1,α_1,…,α_{k-1}> if α_k[η] = 0 and k>2,
α[η] = α_1 if α_k[η] = 0 and k = 2.
6. If α=<2,β,γ> and R(γ)=1’ then R(α)=ω’ and α[η]=<2,β,γ[0]>⊗η.
7. If α=<2,ν,β> and R(β)∈{ω’}∪{<2,μ,0>|0⊲ μ⊴ν} then R(α)=R(β) and α[η]=<2,ν,β[η]>.
8. If α=<2,ν,β> and R(β)=<2,μ,0> and ν⊲μ then R(α)=ω’ and α[η]=<2,ν,β[γ[η]]> with γ[0]=<2,μ[0],0> and γ[η+1]=<2,μ[0],β[γ[η]]>.
10. Definition of FGH for α∈OT and n∈ℕ
1. If R(α)=0 then f(α,n)=n+1
2. If R(α)=1’ then f(α,n)= γ[n] where γ[0]=n and γ[m+1]= f(α[0],γ[m])
3. If R(α)=ω’ then f(α,n)= f(α[n],n)
If α = V(β) then for the function of fast-growing hierarchy f_β(n) = f(α,n)
11. Definition of hyperoperations for α∈OT and n,k∈ℕ\{0}
1. If R(α)∈{0,1’} then h(n,α,1)=n
2. If R(α)=0 then h(n,α,k+1)=h(n,α,k)+n
3. If R(α)=1’ then h(n,α,k+1)=h(n,α[0],h(n,α,k))
4. If R(α)=ω’ then h(n,α,k)= h(n,α[k],n)
If α = V(β) then for extended arrows n↑βk = h(n,α,k)
12. References
1. Buchholz's articles: [1] [2]
3. P進大好きbot’s notation: [5]