Original Papers

See also Google Scholar

2020

[4] Eco-friendly carboxymethyl cellulose nanofiber hydrogels prepared via freeze crosslinking and their applications

Y. Sekine, T. Nankawa, S. Yunoki, T. Sugita, H. Nakagawa, T. Yamada

ACS Applied Polymer Materials, accepted.


[3] Thermocells Driven by Phase Transition of Hydrogel Nanoparticles

Benshuai Guo, Yu Hoshino*, Fan Gao, Keisuke Hayashi, Yoshiko Miura, Nobuo Kimizuka, and Teppei Yamada*

J. Am. Chem. Soc., ASAP

2020/9/27 on web, DOI: 10.1021/jacs.0c08600


[2] Increased Seebeck Coefficient of [Fe(CN)6]4−/3− Thermocell Based on the Selective Electrostatic Interactions with Cationic Micelles

Risa Iwami, Teppei Yamada , Nobuo Kimizuka

Chem. Lett., 49, 1197-1200 (2020).

2020/7/15 on web, DOI: 10.1246/cl.200410


[1] Enhanced Seebeck Coefficient of Thermocells by Heat-Induced Deposition of I3−/Hydrophobized α-Cyclodextrin Complexes on Electrode

Hirotaka Inoue, Yimin Liang, Teppei Yamada, Nobuo Kimizuka

Chem. Commun., 2020, 56, 7013-7016

2020/5/13 on web, DOI:10.1039/D0CC02356F

2019

[8] Transcription of Chirality from Metal–Organic Framework to Polythiophene

T. Kitao, Y. Nagasaka, M. Karasawa, T. Eguchi, N. Kimizuka, K. Ishii, T. Yamada, T. Uemura,

J. Am. Chem. Soc., 2019, 141, 50, 19565-19569.

November 30, 2019 on web, DOI:10.1021/jacs.9b10880

[7] Synthesis of a Redox-active Metal­Organic Framework MIL-116(Fe) and Its Lithium Ion Battery Cathode Properties

T. Yamada,* K. Shiraishi, N. Kimizuka

Chem. Lett. 48(11), 1379-1382 (2019)

2019/9/5 on web, DOI:10.1246/cl.190613

[6] Electrochemical Thermo-Electric Conversion Using Polysulfide as Redox Species

Y. Liang, T. Yamada, N. Kimizuka

ChemSusChem, 12, 4014-4020 (2019).

2019/7/23 on web, DOI:10.1002/cssc.201901566

[5] Synthesis, crystal structure and possible proton conduction of Fe(H2PO4)2F

Z. Maa, L. Landera, S. Nishimura, C. Fukakusa, T. Yamada, M. Okubo, A. Yamada

Solid State Ionics, 338, 134-137 (2019).

2019/6/3 on web, DOI:10.1016/j.ssi.2019.05.019

[3] A Theoretical Basis for the Enhancement of Seebeck Coefficients in Supramolecular Thermocells

Y. Liang, T. Yamada, H. Zhou, N. Kimizuka

Bull. Chem. Soc. Jpn., 2019, 92, 1142-1147.

May 18, 2019 on web, DOI:10.1246/bcsj.20190062

BCSJ論文賞受賞

[2] Synthesis of Chiral Labtb and Visualization of Its Enantiomer Excess by Induced Circular Dichroism Imaging

T. Yamada, T. Eguchi, T. Wakiyama, T. Narushima, H. Okamoto, N. Kimizuka

Chem. -Eur. J. 10, 6698-6702 (2019).

03 April 2019 on web, DOI:10.1002/chem.201900329

[2] Hierarchical Hybrid Metal-Organic Frameworks: Tuning the Visible/Near-Infrared Optical Properties by a Combination of Porphyrin and Its Isomer Units

Y. Yang, M. Ishida, Y. Yasutake, S. Fukatsu, C. Fukakusa, M. Morikawa, T. Yamada, N. Kimizuka, H. Furuta,

Inorg. Chem., 58, 4647-4656 (2019).

15 March 2019 on web, DOI:10.1021/acs.inorgchem.9b00251

[1] Hexakis(2,3,6-tri-O-methyl)-α-cyclodextrin–I5 − Complex in Aqueous I−/I3 − Thermocells and Enhancement in the Seebeck Coefficient

Y. Liang, T. Yamada, H. Zhou, N. Kimizuka

Chem. Sci., 2019, 10, 773-780.

22 Oct 2018 on web, DOI:10.1039/C8SC03821J



2018

[8] Supramolecular Thermocell Consisting of Ferrocenecarboxylate and β-Cyclodextrin That Has a Negative Seebeck Coefficient

T. Yamada, X. Zou, Y. Liang, N. Kimizuka

Polymer Journal, 50, 761-769 (2018).

2018/5/1 on web, DOI:10.1038/s41428-018-0061-7

[7] Two-dimensional structural ordering in a chromophoric ionic liquid for triplet energy migration-based photon upconversion

S. Hisamitsu, N. Yanai, H. Kouno, E. Magome, M. Matsuki, T. Yamada, A. Monguzzi, N. Kimizuka

Phys. Chem. Chem. Phys., 20, 3233-3240 (2018).

2017/11/3 on web, DOI: 10.1039/c7cp06266d

[6] Enhancement of Ionic Conductivity in Organic Ionic Plastic Crystals by Introducing Racemic Ammonium Ions

M. Matsuki, T. Yamada, S. Dekura, H. Kitagawa, N. Kimizuka

Chem. Lett., 47(4), 497-499 (2018).

2018/2/2 on web, DOI: 10.1246/cl.171181

[5] Synthesis and Electric Properties of a Two-Dimensional Metal-Organic Framework based on Phthalocyanine

H. Nagatomi, N. Yanai, T. Yamada, K. Shiraishi, N. Kimizuka

Chem. Asian J., 24(8), 1806-1810 (2018).

2018/1/18 on web, DOI:10.1002/chem.201705530

[4] Selective Ionic Conduction in Choline Iodide/Triiodide Solid Electrolyte and Its Application to Thermocell

T. Shimono, M. Matsuki, T. Yamada, M. Morikawa, N. Yasuda, T. Fujigaya, N. Kimizuka

Chem. Lett., 47(3), 261-264 (2018).

2017/12/5 on web, DOI:10.1246/cl.171069

[3] Non-Polar to Polar Phase Transition of a Chiral Ionic Plastic Crystal and the Switch of Rotation Symmetry

M. Matsuki, T. Yamada, N. Yasuda, S. Dekura, H. Kitagawa, N. Kimizuka

J. Am. Chem. Soc., 140 (1), 291-297 (2018).

2017/12/4 on web, DOI: 10.1021/jacs.7b10249

[2] Thermo-electrochemical Cells Empowered by Selective Inclusion of Redox-active Ions by Polysaccharides

H. Zhou, T. Yamada, N. Kimizuka

Sustainable Energy and Fuels, 2, 472-478 (2018).

2017/12/4 on web, DOI: 10.1039/C7SE00470B

[1] Humidity Responsive ON/OFF Switching of Gas Inclusion using Cooperative Opening/Closing of Heterogeneous Crystalline Cavities in a Peptide Ni(II)-Macrocycle

R. Miyake, C. Kuwata, M. Ueno, T. Yamada

Chem. Eur. J 24, 793-797 (2018).

2017/12/15 on web, DOI: 10.1002/chem.201704809


2017

[5] Sensitizer-Free Photon Upconversion in Single-Component Brominated Aromatic Crystals

K. Okumura, M. Matsuki, T. Yamada, N. Yanai, N. Kimizuka

Chemstryselect, 2, 7597-7601 (2017).

2017/8/31 on web, DOI:10.1002/slct.201701769

[4] Applicability of MIL-101(Fe) as cathode of lithium ion battery

T. Yamada, K. Shiraishi, H. Kitagawa, N. Kimizuka

Chem. Commun., 53, 8215-8218 (2017).

2017/6/15 on web, DOI:10.1039/C7CC01712J

[3] Zirconium-based Metal-Organic Frameworks with N-Confused Porphyrins: Synthesis, Structures, and Optical Properties

Y. Yang, R. Sakashita, K. Yamasumi, M. Ishida, T. Yamada, H. Furuta,

Chem. Lett., 46, 1230-1232 (2017).

2017/6/3 on web, DOI:10.1246/cl.170461

[2] Grain-Boundary-Free Super-Proton Conduction of a Solution-Processed Prussian-Blue Nanoparticle Film

K. Ono, M. Ishizaki, K. Kanaizuka, T. Togashi, T. Yamada, H. Kitagawa, M. Kurihara

Angew. Chem., Int. Ed. 56, 5531-5535 (2017).

2017/4/13 on web, DOI:10.1002/ange.201701759

[1] Introduction of Thiourea into Metal-Organic Frameworks by Immersion Technique and Their Phase Transition Characteristics

T. Yamada, Y. Kubo, N. Kimizuka

Chem. Lett., 46, 115-117 (2017).

2016/11/02 on web, DOI:10.1246/cl.160910


2016

[7] Poly{1,4-butanediammonium [tris-μ-oxalatodimanganese(II)] Hexahydrate}

M. Sadakiyo, T. Yamada, H. Kitagawa

IUCrData, 1, x161639, 1-3 (2016).

2016/11/1 on web, DOI:10.1107/S2414314616016394

[6] A Study on Proton Conduction in a Layered Metal–Organic Framework, Rb2(adp)[Zn2(ox)3]·3H2O (adp = adipic acid, ox2- = oxalate)

M. Sadakiyo, T. Yamada, H. Kitagawa

Inorg. Chem. Commun., 72, 138-140 (2016).

2016/8/28 on web, DOI:10.1016/j.inoche.2016.08.016

[5] High Proton Conductivity of Zinc Oxalate Coordination Polymers Mediated by a Hydrogen Bond with Pyridinium

T. Yamada, T. Nankawa

Inorg. Chem., 55, 8267-8270 (2016).

2016/8/23 on web, DOI:10.1021/acs.inorgchem.6b01534

[4] Supramolecular Thermo-Electrochemical Cells: Enhanced Thermoelectric Performance by Host–Guest Complexation and Salt-Induced Crystallization

H. Zhou, T. Yamada, N. Kimizuka

J. Am. Chem. Soc., 138, 10502-10507 (2016).

2016/8/10 on web, DOI:10.1021/jacs.6b04923

[3] Hydrated Proton-Conductive Metal–Organic Frameworks

M. Sadakiyo, T. Yamada, H. Kitagawa

ChemPlusChem, 81, 691-701 (2016).

2016/7/26 on web, DOI:10.1002/cplu.201600243 (Invited Minireview)

[2] Proton-Conductive Metal–Organic Frameworks

T. Yamada, M. Sadakiyo, A. Shigematsu, H. Kitagawa

Bull. Chem. Soc. Jpn. 89 1 1-10(2016).

2015/11/5 on web, DOI:10.1246/bcsj.20150308

The Chemical Society of Japan Award for Young Chemists for 2012

BCSJ Diamond Collectionに選出

[1] A Significant Change in Selective Adsorption Behavior for Ethanol by Flexibility Control through the Type of Central Metals in a Metal–Organic Framework

M. Sadakiyo, T. Yamada, K. Kato, M Takata, H. Kitagawa

Chem. Sci., 7, 1349-1356 (2016).

2015/11/5 on web, DOI:10.1039/C5SC03325J


2015

[6] An Electropolymerized Crystalline Film Incorporating Axially-Bound Metalloporhycenes: Remarkable Reversibility, Reproducibility, and Coloration Efficiency of Ruthenium(II/III)-Based Electrochromism

M. Abe, H. Futagawa, T. Ono, T. Yamada, N. Kimizuka, Y. Hisaeda

Inorg. Chem., 54, 11061-11063 (2015).

2015/11/16 on web, DOI:10.1021/acs.inorgchem.5b02129

[5] Lithium Ion Diffusion in a Metal–Organic Framework Mediated by an Ionic Liquid

K. Fujie, R. Ikeda, K. Otsubo, T. Yamada, H. Kitagawa

Chem. Mater., 27, 7355-7361 (2015).

2015/10/14 on web, DOI:10.1021/acs.chemmater.5b02986

[4] Proton Conduction Study on Water Confined in Channel or Layer Networks of LaIIIMIII(ox)3∙10H2O (M = Cr, Co, Ru, La)

H. Okawa, M. Sadakiyo, K. Otsubo, K. Yoneda, T. Yamada, M. Ohba, H. Kitagawa

Inorg. Chem. 54, 8529-8535 (2015).

2015/8/17on web, DOI:10.1021/acs.inorgchem.5b01176

[3] Hybrid Materials of Ni NP@MOF Prepared by a Simple Synthetic Method

M. Mukoyoshi, H. Kobayashi, K. Kusada, M. Hayashi, T. Yamada, M. Maesato, J. M. Taylor, Y. Kubota, K. Kato, M. Takata, T. Yamamoto, S. Matsumura, H. Kitagawa

Chem. Commun., 51, 12463-12466 (2015).

2015/7/6 on web, DOI:10.1039/C5CC04663G

[2] Low Temperature Ionic Conductor: Ionic Liquid Incorporated within a Metal–Organic Framework

K. Fujie, K. Otsubo, R. Ikeda, T. Yamada, H. Kitagawa

Chem. Sci., 6, 4306-4310 (2015).

2015/5/5 on web, DOI:10.1039/C5SC01398D

[1] Photoliquefiable Ionic Crystals: A Phase Crossover Approach for Photon Energy Storage Materials with Functional Multiplicity

K. Ishiba, M. Morikawa, C. Chikara, T. Yamada, K. Iwase, M. Kawakita, N. Kimizuka

Angew. Chem., Int. Ed., 54, 1532-1536 (2015).

2014/12/5 on web, DOI:10.1002/ange.201410184


2014

[10] Morphology-Controlled Synthesis of Cubic Cesium Hydrogen Silicododecatungstate Crystals

S. Uchida, Y. Ogasawara, T. Maruichi, A. Kumamoto, Y. Ikuhara, T. Yamada, H. Kitagawa, N. Mizuno

Cryst. Growth Des., 2014, 14, 6620-6626(2014).

2014/10/27 on web, DOI:10.1021/cg501575x

[9] Proton Conductivity Control by Ion Substitution in a Highly Proton-Conductive Metal–Organic Framework

M. Sadakiyo, T. Yamada, H. Kitagawa

J. Am. Chem. Soc., 136, 13166-13169 (2014).

2014/9/8 on web, DOI:10.1021/ja507634v

[8] Introduction of an Ionic Liquid into the Micropores of a Metal–Organic Framework and Its Anomalous Phase Behavior

K. Fujie, T. Yamada, R. Ikeda, H. Kitagawa

Angew. Chem., Int. Ed., 53, 11302-11305 (2014).

2014/8/28 on web, DOI:10.1002/anie.201406011

[7] A Systematic Study on the Stability of Porous Coordination Polymers against Ammonia

T. Kajiwara, M. Higuchi, D. Watanabe, H. Higashimura, T. Yamada, H. Kitagawa

Chem. Eur. J., 20, 15611-15617 (2014).

2014/10/14 on web, DOI:10.1002/chem.201403542

[6] Anomalous Enhancement of Proton Conductivity for Water Molecular Clusters Stabilized in Interstitial Spaces of Porous Molecular Crystals

M. Tadokoro, Y. Ohhata, Y. Shimazaki, S. Ishimaru, T. Yamada, Y. Nagao, T. Sugaya, K. Isoda, Y. Suzuki, H. Kitagawa, H. Matsui

Chem. Eur. J., 20, 13698-13709 (2014).

2014/9/3 on web, DOI:10.1002/chem.201402900

[5] Proton Dynamics of Two Dimensional Oxalate-Bridged Coordination Polymers

S. Miyatsu, M. Kofu, A. Nagoe, T. Yamada, M. Sadakiyo, T. Yamada, H. Kitagawa, M. Tyagi, V. G. Sakai, O. Yamamuro

Phys. Chem. Chem. Phys., 16, 17295-17304 (2014).

2014/7/3 on web, DOI:10.1039/c4cp01432d.

[4] Control of Crystalline Proton-conducting Pathways by Water-Induced Transformations of Hydrogen-bonding Networks in a Metal–Organic Framework

M. Sadakiyo, T. Yamada, K. Honda, H. Matsui, H. Kitagawa

J. Am. Chem. Soc., 136, 7701-7707 (2014).

2014/5/2 on web, DOI:10.1021/ja5022014

[3] Coordination Lamellar Nanofiber Consisting of N-(2-Hydroxy-n-dodecyl)-L-alanine and Divalent Copper

T. Yamada, Y. Minami, N. Kimizuka

Chem. Lett. 43, 1031-1033 (2014).

2014/4/8 on web, DOI:10.1246/cl.140271

[2] Synthesis, Water Adsorption and Proton Conductivity of Solid-Solution Type Metal–Organic Frameworks Al(OH)(bdc–OH)x(bdc–NH2)1–x

T. Yamada, Y. Shirai, H. Kitagawa

Chem. Asian J. , 9, 1316 – 1320 (2014)

2014/3/20 on web, DOI:10.1002/asia.201301673

[1] A 3D Coordination Polymer of Cd(II) with an Imidazolium Based Linker Showing Parallel Polycatenation Forming Channels with Aligned Imidazolium Groups

S. Sen, T. Yamada, H. Kitagawa, P. K. Bharadwaj

Cryst. Growth Des., 14, 1240-1244 (2014).

2014/1/14on web, DOI:10.1021/cg401760m


2013

[1] Preparation of Sub-10 nm AgI Nanoparticles and a Study on their Phase Transition Temperature

S. Yamasaki, T. Yamada, H. Kobayashi, H. Kitagawa

Chem.-Asian J., 8, 73 (2013).

[2] Designer Coordination Polymers: Dimensional Crossover Architectures and Proton Conduction

T. Yamada, K. Otsubo, R. Makiura, H. Kitagawa

Chem. Soc. Rev., 42, 6655 (2013).

[3] プロトン伝導性配位高分子の創成

T. Yamada

Bulletin of Japan Society of Coordination Chemistry 61, 46 (2013).

[4] Superprotonic Conductivity in a Highly Oriented Crystalline Metal−Organic Framework Nanofilm

G. Xu, K. Otsubo, T. Yamada, S. Sakaida, H. Kitagawa

J. Am. Chem. Soc., 135, 7438 (2013).

[5] Proton-Conductive Magnetic Metal−Organic Frameworks, {NR3(CH2COOH)}[MaIIMbIII(ox)3]: Effect of Carboxyl Residue upon Proton Conduction

H. Okawa, M. Sadakiyo, T. Yamada, M. Maesato, M. Ohba, H. Kitagawa

J. Am. Chem. Soc., 135, 2256 (2013).

[6] Graphene Oxide Nanosheet with High Proton Conductivity

M. R. Karim, K. Hatakeyama, T. Matsui, H. Takehira, T. Taniguchi, M. Koinuma, Y. Matsumoto, T. Akutagawa, T. Nakamura, S. Noro, T. Yamada, H. Kitagawa, S. Hayami

J. Am. Chem. Soc., 135, 8097 (2013).

[7] A Key Mechanism of Ethanol Electrooxidation Reaction in a Noble-Metal-Free Metal−Organic Framework

Ishimoto Takayoshi; Ogura Teppei; Koyama Michihisa; Yang Lifen; Kinoshita Shozo; Yamada Teppei; Tokunaga Makoto; Kitagawa Hiroshi

J. Phys. Chem. C, 117, 10607 (2013).


2012

[1] Syntheses of Metal−Organic Frameworks with Protected Phosphonate Ligands

Yamada Teppei; Kitagawa Hiroshi

CrystEngComm, 14, 4148 (2012).

[2] Facile “Modular Assembly” for Fast Construction of a Highly Oriented Crystalline MOF Nanofilm

Xu Gang; Yamada Teppei; Otsubo Kazuya; Sakaida Shun; Kitagawa Hiroshi

J. Am. Chem. Soc., 134, 16524 (2012).

[3] Selective Separation of Water, Methanol, and Ethanol by a Porous Coordination Polymer Built with a Flexible Tetrahedral Ligand

Shigematsu Akihito; Yamada Teppei; Kitagawa Hiroshi

J. Am. Chem. Soc., 134, 13145 (2012).

[4] High Proton Conductivity by a Metal−Organic Framework Incorporating Zn8O Clusters with Aligned Imidazolium Groups Decorating the Channels

Sen Susan; Nair Nisanth N.; Yamada Teppei; Kitagawa Hiroshi; Bharadwaj Parimal K.

J. Am. Chem. Soc., 134, 19432 (2012).

[5] Promotion of Low-Humidity Proton Conduction by Controlling Hydrophilicity in Layered Metal−Organic Frameworks

Sadakiyo Masaaki; Okawa Hisashi; Shigematsu Akihito; Ohba Masaaki; Yamada Teppei; Kitagawa Hiroshi

J. Am. Chem. Soc., 134, 5472 (2012).


2011

[1] Quasi-Elastic Neutron Scattering Studies on Dynamics of Water Confined in Nanoporous Copper Rubeanate Hydrates

Yamada Takeshi; Yonamine Ryo; Yamada Teppei; Kitagawa Hiroshi; Tyagi Madhusudan; Nagao Michihiro; Yamamuro Osamu

J. Phys. Chem. B, 115, 13563 (2011).

[2] Synthesis of a Novel Isoreticular Metal–organic Framework by Protection and Complexation of 2,5-Dehydroxyterephthalic Acid

Yamada Teppei; Kitagawa Hiroshi

Supramol. Chem., 23, 315 (2011).

[3] Porous Interpenetrating Metal−Organic Frameworks with Hierarchical Nodes

Yamada Teppei; Iwakiri Shoji; Hara Takafumi; Kanaizuka Katsuhiko; Kurmoo Mohamedally; Kitagawa Hiroshi

Cryst. Growth Des., 11, 1798 (2011).

[4] Structure Manufacturing of Proton-Conducting Organic−Inorganic Hybrid Silicophosphite Membranes by Solventless Synthesis

Tokuda Yomei; Oku Satoshi; Yamada Teppei; Takahashi Masahide; Yoko Toshinobu; Kitagawa Hiroshi; Ueda Yoshikatsu

J. Mater. Res., 26, 796 (2011).

[5] Wide Control of Proton Conductivity in Porous Coordination Polymers

A. Shigematsu, T. Yamada, H. Kitagawa

J. Am. Chem. Soc., 133, 2034-2036 (2011).

[6] Hydroxyl Group Recognition by Hydrogen-Bonding Donor and Acceptor Sites Embedded in a Layered Metal−Organic Framework

M. Sadakiyo, T. Yamada, H. Kitagawa

J. Am. Chem. Soc., 133, 11050-11053 (2011).


2010

[1] A Metal−Organic Framework as an Electrocatalyst for Ethanol Oxidation

L. Yang, S. Kinoshita, T. Yamada, S. Kanda, H. Kitagawa, M. Tokunaga, T. Ishimoto, T. Ogura, R. Nagumo, A. Miyamoto, M. Koyama

Angew. Chem. Int. Ed., 49, 5348-5351 (2010).

[2] Calorimetric and Neutron Diffraction Studies on Transitions of Water Confined in Nanoporous Copper Rubeanate

Yamada Takeshi; Yonamine Ryo; Yamada Teppei; Kitagawa Hiroshi; Yamamuro Osamu

J. Phys. Chem. B, 114, 8405 (2010).

[3] Structures and Proton Conductivity of One-Dimensional M(dhbq)•nH2O (M = Mg, Mn, Co, Ni, and Zn, H2(dhbq) = 2,5-Dihydroxy-1,4-benzoquinone) Promoted by Connected Hydrogen-Bond Networks with Absorbed Water

Yamada Teppei; Morikawa Shota; Kitagawa Hiroshi

Bull. Chem. Soc. Jpn., 83, 42 (2010).

[4] Design and Characterization of a Polarized Coordination Polymer of a Zinc(II) Biphenyldicarboxylate Bearing a Sulfone Group

Kanaizuka Katsuhiko; Iwakiri Shoji; Yamada Teppei; Kitagawa Hiroshi

Chem. Lett., 39, 28 (2010).


2009

[1] High Proton Conductivity of One-Dimensional Ferrous Oxalate Dihydrate

Yamada Teppei; Sadakiyo Masaaki; Kitagawa Hiroshi

J. Am. Chem. Soc., 131, 3144-3145 (2009).

[2] Protection and Deprotection Approach for the Introduction of Functional Groups into Metal−Organic Frameworks

Yamada Teppei; Kitagawa Hiroshi

J. Am. Chem. Soc., 131, 6312-6313 (2009).

[3] Rational Designs for Highly Proton-Conductive Metal−Organic Frameworks

Sadakiyo Masaaki; Yamada Teppei; Kitagawa Hiroshi

J. Am. Chem. Soc., 131, 9906-9907 (2009).

[4] Crystal Structure and Proton Conductivity of a One-dimensional Coordination Polymer, {Mn(DHBQ)(H2O)2}

Morikawa Shota; Yamada Teppei; Kitagawa Hiroshi

Chem. Lett., 38, 654 (2009).

[5] Size-controlled stabilization of the superionic phase to room temperature in polymer-coated AgI nanoparticles

Makiura Rie; Yonemura Takayuki; Yamada Teppei; Yamauchi Miho; Ikeda Ryuichi; Kitagawa Hiroshi; Kato Kenichi; Takata Masaki

Nat. Mater., 8, 476-480 (2009).


2008

[1] Structural study of an iron oxalate and a copper rubeanate layer on an ultra-smooth sapphire c-face

Haruki R.; Sakata O.; Yamada T.; Kanaizuka K.; Makiura R.; Akita Y.; Yoshimoto M.; Kitagawa H.

Acta Crystallographica Section A, C399-C400 (2008).

[2] Structural Evaluation of an Iron Oxalate Complex Layer Grown on an Ultra-smooth Sapphire (0001) Surface by a Wet Method

Haruki Rie; Sakata Osami; Yamada Teppei; Kanaizuka Katsuhiko; Makiura Rie; Akita Tomoki

Trans. Mater. Res. Soc. Jpn., 2008; p 629.


2006

[1] Thermochromic Triangular [MCo2](M= Rh, Ir, Ru) Clusters Containing a Planar Metalladithiolene Ring in η3 Coordination

Nakagawa N.; Yamada T.; Murata M.; Sugimoto M.; Nishihara H.

Inorg. Chem., 45, 14 (2006).

[2] Synthesis of Heterometal Cluster Complexes by the Reaction of Cobaltadichalcogenolato Complexes with Groups 6 and 8 Metal Carbonyls

Murata Masaki; Habe Satoru; Araki Shingo; Namiki Kosuke; Yamada Teppei; Nakagawa Norikiyo; Nankawa Takuya; Nihei Masayuki; Mizutani Jun; Kurihara Masato; Nishihara Hiroshi

Inorg. Chem., 45, 1108 (2006).


2003

[1] Photoluminescent dinuclear lanthanide complexes with tris (2-pyridyl) carbinol acting as a new tetradentate bridging ligand

Watanabe M.; Nankawa T.; Yamada T.; Kimura T.; Namiki K.; Murata M.; Nishihara H.; Tachimori S.

Inorg. Chem., 42, 6977 (2003).

[2] Synthesis of azo-conjugated catecholate complexes and their photo- and proton-responses

Nagashima S.; Nihei M.; Yamada T.; Murata M.; Kurihara M.; Nishihara H.

Macromolecular Symposia, 204, 93 (2003).

[3] Synthesis, Structure, and Dissociation Equilibrium of [Co(η5-C5H5)(Se2C6H4)]2, a Novel Metalladiselenolene Complex

Habe S.; Yamada T.; Nankawa T.; Mizutani J.; Murata M.; Nishihara H.

Inorg. Chem., 42, 1952 (2003).