In this paper, we propose a terahertz (THz) guided-mode resonance (GMR) notch filter made of a monolithic polyethylene terephthalate (PET) film, which has a monolayer grating structure. The proposed configuration shows both polarization-dependent and polarization-independent notch filter characteristics for the incident THz wave depending on the rotation angle of the second grating film. When the rotation angle is 0°, the filtering strength (transmittance) at resonance frequency changes from 0.4 (0.996) to 99.0% (0.010) according to the incident polarization. The transmittance continuously decreases with increasing rotation angle until 90°. When the rotation angle is 90°, the transmittance converges to 0.065 (± 0.015) independent of the incident wave polarization. When the incident polarization angle ranges from 90° to 180°, paradoxically, the transmittance through the two GMR grating films is greater than the transmittance through only the first GMR grating film due to the enhancement of the vertical component of the THz wave. These results agree well with a calculation using a polar coordinate system.
We developed a long-range multipass gas cell that extends the beam path to 18.61 m, for which a THz beam shows multiple reflections within a diameter of only 32 cm and a height of 54 cm. Due to the very long propagation THz beam path in the multipass gas cell, the absorbance and absorption coefficients of nitrous oxide can be measured very sensitively from 0.2 to 1.2 THz bandwidth. The gas concentration can be determined from the measured THz pulses for the absorption. As the gas concentration increased sequentially from 1.0% to 8.3% at atmospheric pressure, the absorbance lines also increased sequentially. The resulting absorptions and frequencies of transitions showed good agreement between experiment and calculations performed with the HITRAN database.
We modified our 910-m long path THz system to increase the signal-to-noise ratio (S/N) with a nanostructure plasmonic THz transmitter (Tx) chip and a seven-mirror array reflector with 1 m diameter. When the THz pulse propagates the 910-m distance in the atmosphere, the S/N is up to 1170:1, which made the THz pulse measurable at a high water vapor density (WVD) of up to 25.2 g/m3. The time shift of the THz pulse according to the WVD measured for each meteorological season was matched well with the theoretical result. Due to the modified long-distance THz system, we were able to measure for the first time the resonances of N2O gas, which is located 455 m away from the Tx and receiver (Rx) chips and contained in a 1.5-m diameter rubber balloon under atmospheric pressure. Seven resonances can be detected except for one overlay of resonant frequency by water vapor.