From Wikipedia, the free encyclopedia
Memory has the ability to encode, store and recall information. Memories give an organism the capability to learn and adapt from previous experiences as well as build relationships. Encoding allows the perceived item of use or interest to be converted into a construct that can be stored within the brain and recalled later from short term or long term memory. Working memory stores information for immediate use or manipulation which is aided through hooking onto previously archived items already present in the long-term memory of an individual.
Visual, elaborative, organizational, acoustic, and semantic encodings are the most intensively used. Other encodings are also used.
Visual encoding is the process of encoding images and visual sensory information. This means that people can convert the new information that they stored into mental pictures(Harrison, C., Semin, A.,(2009). Psychology. New York p. 222) Visual sensory information is temporarily stored within our iconic memory[1] and working memory before being encoded into permanent long-term storage.[2][3] Baddeley’s model of working memory states that visual information is stored in the visuo-spatial sketchpad.[1]
The amygdala is a complex structure that has an important role in visual encoding. It accepts visual input in addition to input from other systems and encodes the positive or negative values of conditioned stimuli.[4]
Elaborative Encoding is the process of actively relating new information to knowledge that is already in memory. Memories are a combination of old and new information, so the nature of any particular memory depends as much on the old information already in our memories as it does on the new information coming in through our senses. In other words, how we remember something depends in how we think about it at the time. Many studies have shown that long-term retention is greatly enhanced by elaborative encoding.[5]
Acoustic encoding is the encoding of auditory impulses. According to Baddeley, processing of auditory information is aided by the concept of the phonological loop, which allows input within our echoic memory to be sub vocally rehearsed in order to facilitate remembering.[1] When we hear any word, we do so by hearing to individual sounds, one at a time. Hence the memory of the beginning of a new word is stored in our echoic memory until the whole sound has been perceived and recognized as a word.[6] Studies indicate that lexical, semantic and phonological factors interact in verbal working memory. The phonological similarity effect (PSE), is modified by word concreteness. This emphasizes that verbal working memory performance cannot exclusively be attributed to phonological or acoustic representation but also includes an interaction of linguistic representation.[7] What remains to be seen is whether linguistic representation is expressed at the time of recall or whether they[clarification needed] participate in a more fundamental role in encoding and preservation.[7]
Tactile encoding is the processing and encoding of how something feels, normally through touch. Neurons in the primary somatosensory cortex (S1) react to vibrotactile stimuli by activating in synchronisation with each series of vibrations.[8] Odors and tastes may also lead to encode.
Elaborative encoding is the course of dynamically connecting new material to information that is previously in memory.[9]
Organizational encoding is the course of classifying information permitting to the associations amid a sequence of terms. [10]
In general encoding for short-term storage (STS) in the brain relies primarily on acoustic rather than semantic encoding.
Semantic encoding is the processing and encoding of sensory input that has particular meaning or can be applied to a context. Various strategies can be applied such as chunking and mnemonics to aid in encoding, and in some cases, allow deep processing, and optimizing retrieval.
Words studied in semantic or deep encoding conditions are better recalled as compared to both easy and hard groupings of nonsemantic or shallow encoding conditions with response time being the deciding variable.[11] Brodmann’s areas 45, 46, and 47 (the left inferior prefrontal cortex or LIPC) showed significantly more activation during semantic encoding conditions compared to nonsemantic encoding conditions regardless of the difficulty of the nonsemantic encoding task presented. The same area showing increased activation during initial semantic encoding will also display decreasing activation with repetitive semantic encoding of the same words. This suggests the decrease in activation with repetition is process specific occurring when words are semantically reprocessed but not when they are nonsemantically reprocessed.[11]
Encoding is a biological event that begins with perception. All perceived and striking sensations travel to the brain’s hippocampus where all these sensations are combined into one single experience.[12] The hippocampus is responsible for analyzing these inputs and ultimately deciding if they will be committed to long-term memory; these various threads of information are stored in various parts of the brain. However, the exact way in which these pieces are identified and recalled later remains unknown.[12]
Encoding is achieved using a combination of chemicals and electricity. Neurotransmitters are released when an electrical pulse crosses the synapse which serves as a connection from nerve cells to other cells. The dendrites receive these impulses with their feathery extensions. A phenomenon called long-term potentiation allows a synapse to increase strength with increasing numbers of transmitted signals between the two neurons. For that to happen, NMDA receptor, which influences the flow of information between neurons by controlling the initiation of long-term potentiation in most hippocampal pathways, need to come to the play. For these NMDA receptors to be activated, there must be two conditions. Firstly, glutamate has to be released and bound to the NMDA receptor site on postsynaptic neurons. Secondly, excitation has to take place in postsynaptic neurons.[13]These cells also organise themselves into groups specializing in different kinds of information processing. Thus, with new experiences the brain creates more connections and may ‘rewire’. The brain organizes and reorganizes itself in response to one's experiences, creating new memories prompted by experience, education, or training.[12] Therefore the use of a brain reflects how it is organised.[12] This ability to re-organize is especially important if ever a part of the brain becomes damaged. Scientists are unsure of whether the stimuli of what we do not recall are filtered out at the sensory phase or if they are filtered out after the brain examines their significance.[12]
Positron emission tomography (PET) demonstrates a consistent functional anatomical blueprint of hippocampal activation during episodic encoding and retrival. Activation in the hippocampal region associated with episodic memory encoding has been shown to occur in the rostral portion of the region whereas activation associated with episodic memory retrieval occurs in the caudal portions.[14] This is referred to as the Hippocampal Encoding/Retrieval model or HIPER model.
One study used PET to measure cerebral blood flow during encoding and recognition of faces in both young and older participants. Young people displayed increased cerebral blood flow in the right hippocampus and the left prefrontal and temporal cortices during encoding and in the right prefrontal and parietal cortex during recognition.[15] Elderly people showed no significant activation in areas activated in young people during encoding, however they did show right prefrontal activation during recognition.[15] Thus it may be concluded that as we grow old, failing memories may be the consequence of a failure to adequately encode stimuli as demonstrated in the lack of cortical and hippocampal activation during the encoding process.[15]
Recent findings in studies focusing on patients with post traumatic stress disorder demonstrate that amino acid transmitters, glutamate and GABA, are intimately implicated in the process of factual memory registration, and suggest that amine neurotransmitters, norepinephrine and serotonin, are involved in encoding emotional memory.[16]
The process of encoding is not yet well understood, however key advances have shed light on the nature of these mechanisms. Encoding begins with any novel situation, as thebrain will interact and draw conclusions from the results of this interaction. These learning experiences have been known to trigger a cascade of molecular events leading to the formation of memories.[17] These changes include the modification of neural synapses, modification of proteins, creation of new synapses, activation of gene expression and newprotein synthesis. However, encoding can occur on different levels. The first step is short-term memory formation, followed by the conversion to a long-term memory, and then a long-term memory consolidation process.[18]
Synaptic plasticity is the ability of the brain to strengthen, weaken, destroy and create neural synapses and is the basis for learning. These molecular distinctions will identify and indicate the strength of each neural connection. The effect of a learning experience depends on the content of such an experience. Reactions that are favoured will be reinforced and those that are deemed unfavourable will be weakened. This shows that the synaptic modifications that occur can operate either way, in order to be able to make changes over time depending on the current situation of the organism. In the short term, synaptic changes may include the strengthening or weakening of a connection by modifying the preexisting proteins leading to a modification in synapse connection strength. In the long term, entirely new connections may form or the number of synapses at a connection may be increased, or reduced.[18]
A significant short-term biochemical change is the covalent modification of pre-existing proteins in order to modify synaptic connections that are already active. This allows data to be conveyed in the short term, without consolidating anything for permanent storage. From here a memory or an association may be chosen to become a long-term memory, or forgotten as the synaptic connections eventually weaken. The switch from short to long-term is the same concerning both implicit memory and explicit memory. This process is regulated by a number of inhibitory constraints, primarily the balance between protein phosphorylation and dephosphorylation.[18] Finally, long term changes occur that allow consolidation of the target memory. These changes include new protein synthesis, the formation of new synaptic connections and finally the activation of gene expression in accordance with the new neural configuration.[19] The encoding process has been found to be partially mediated by serotonergic interneurons, specifically in regard to sensitization as blocking these interneurons prevented sensitization entirely. However, the ultimate consequences of these discoveries have yet to be identified. Furthermore, the learning process has been known to recruit a variety of modulatory transmitters in order to create and consolidate memories. These transmitters cause the nucleus to initiate processes required for neuronal growth and long term memory, mark specific synapses for the capture of long-term processes, regulate local protein synthesis and even appear to mediate attentional processes required for the formation and recall of memories.
Human memory, including the process of encoding, is known to be a heritable trait that is controlled by more than one gene. In fact, twin studies suggest that genetic differences are responsible for as much as 50% of the variance seen in memory tasks.[17] Proteins identified in animal studies have been linked directly to a molecular cascade of reactions leading to memory formation, and a sizeable number of these proteins are encoded by genes that are expressed in humans as well. In fact, variations within these genes appear to be associated with memory capacity and have been identified in recent human genetic studies.[17] Peter D'Adamo, a naturopathic physician who advocates the Blood type diet, believes an individual's blood type is related to their ability to encode information for prolonged periods of time. Those with Blood Type B are more susceptible to memory loss.[20][verification needed]
The idea that the brain is separated into two complementary processing networks (task positive and task negative) has recently become an area of increasing interest.[vague] The task positive network deals with externally oriented processing whereas the task negative network deals with internally oriented processing. Research indicates that these networks are not exclusive and some tasks overlap in their activation. A study done in 2009 shows encoding success and novelty detection activity within the task-positive network have significant overlap and have thus been concluded to reflect common association of externally-oriented processing.[21] It also demonstrates how encoding failure and retrieval success share significant overlap within the task negative network indicating common association of internally oriented processing.[21] Finally, a low level of overlap between encoding success and retrieval success activity and between encoding failure and novelty detection activity respectively indicate opposing modes or processing.[21] In sum task positive and task negative networks can have common associations during the performance of different tasks.
Different levels of processing influence how well information is remembered. These levels of processing can be illustrated by maintenance and elaborate rehearsal.
Maintenance rehearsal is a shallow form of processing information which involves focusing on an object without thought to its meaning or its association with other objects. For example the repetition of a series of numbers is a form of maintenance rehearsal. In contrast, elaborative or relational rehearsal is a process in which you relate new material to information already stored in Long-term memory. It's a deep form of processing information and involves thought of the object's meaning as well as making connections between the object, past experiences and the other objects of focus. Using the example of numbers, one might associate them with dates that are personally significant such as your parents’ birthdays (past experiences) or perhaps you might see a pattern in the numbers that helps you to remember them.[22]
Due to the deeper level of processing that occurs with elaborative rehearsal it is more effective than maintenance rehearsal in creating new memories.[22] This has been demonstrated in people’s lack of knowledge of the details in everyday objects. For example, in one study where Americans were asked about the orientation of the face on their country’s penny few recalled this with any degree of certainty. Despite the fact that it is a detail that is often seen, it is not remembered as there is no need to because the color discriminates the penny from other coins.[23] The ineffectiveness of maintenance rehearsal, simply being repeatedly exposed to an item, in creating memories has also been found in people’s lack of memory for the layout of the digits 0-9 on calculators and telephones.[24]
Maintenance rehearsal has been demonstrated to be important in learning but its effects can only be demonstrated using indirect methods such aslexical decision tasks,[25] and word stem completion[26] which are used to assess implicit learning. In general, however previous learning by maintenance rehearsal is not apparent when memory is being tested directly or explicitly with questions like " Is this the word you were shown earlier?"
Studies have shown that the intention to learn has no direct effect on memory encoding. Instead, memory encoding is dependent on how deeply each item is encoded, which could be affected by intention to learn, but not exclusively. That is, intention to learn can lead to more effective learning strategies, and consequently, better memory encoding, but if you learn something incidentally (i.e. without intention to learn) but still process and learn the information effectively, it will get encoded just as well as something learnt with intention.[27]
The effects of elaborative rehearsal or deep processing can be attributed to the number of connections made while encoding that increase the number of pathways available for retrieval.[28]
Organization can be seen as the key to better memory. As demonstrated in the above section on levels of processing the connections that are made between the to-be-remembered item, other to-be-remembered items, previous experiences and context generate retrieval paths for the to-be-remembered item. These connections impose organization on the to-be-remembered item, making it more memorable.[29]
For simple material such as lists of words Mnemonics are the best strategy.[citation needed] Mnemonic Strategies are an example of how finding organization within a set of items helps these items to be remembered. In the absence of any apparent organization within a group organization can be imposed with the same memory enhancing results. An example of a mnemonic strategy that imposes organization is the peg-word system which associates the to- be-remembered items with a list of easily remembered items. Another example of a mnemonic device commonly used is the first letter of every word system or acronyms. When learning the colours in arainbow most students learn the first letter of every colour and impose their own meaning by associating it with a name such as Roy. G. Biv which stands for red, orange, yellow, green, blue, indigo, violet. In this way mnemonic devices not only help the encoding of specific items but also their sequence. For more complex concepts, understanding is the key to remembering. In a study done by Wiseman and Neisser in 1974 they presented participants with picture (the picture was of a Dalmatian in the style of pointillism making it difficult to see the image).[30] They found that memory for the picture was better if the participants understood what was depicted.
Another way understanding may aid memory is by reducing the amount that has to be remembered via chunking. Chunking is the process of organizing objects into meaningful wholes. These wholes are then remembered as a unit rather than separate objects. Words are an example of chunking, where instead of simply perceiving letters we perceive and remember their meaningful wholes: words. The use of chunking increases the number of items we are able to remember by creating meaningful "packets" in which many related items are stored as one.
For optimal encoding, connections are not only formed between the items themselves and past experiences, but also between the internal state or mood of the encoder and the situation they are in. The connections that are formed between the encoders internal state or the situation and the items to be remembered are State-dependent. In a 1975 study by Godden and Baddeley the effects of State-dependent learning were shown. They asked deep sea divers to learn various materials while either under water or on the side of the pool. They found that those who were tested in the same condition that they had learned the information in were better able to recall that information, i.e. those who learned the material under water did better when tested on that material under water than when tested on land. Context had become associated with the material they were trying to recall and therefore was serving as a retrieval cue.[31] Results similar to these have also been found when certain smells are present at encoding.[32]
However, although the external environment is important at the time of encoding in creating multiple pathways for retrieval, other studies have shown that simply creating the same internal state that you had at the time of encoding is sufficient to serve as a retrieval cue.[33] Therefore putting yourself in the same mindset that you were in at the time of encoding will help recall in the same way that being in the same situation helps recall. This effect called context reinstatement was demonstrated by Fisher and Craik 1977 when they matched retrieval cues with the way information was memorized.[34]
The context of learning shapes how information is encoded.[35] For instance, Kanizsa in 1979 showed a picture that could be interpreted as either a white vase on a black background or 2 faces facing each other on a white background.[36] The participants were primed to see the vase. Later they were shown the picture again but this time they were primed to see the black faces on the white background. Although this was the same picture as they had seen before, when asked if they had seen this picture before, they said no. The reason for this was that they had been primed to see the vase the first time the picture was presented, and it was therefore unrecognizable the second time as two faces. This demonstrates that the stimulus is understood within the context it is learned in as well the general rule that what really constitutes good learning are tests that test what has been learned in the same way that it was learned.[36] Therefore, to truly be efficient at remembering information, one must consider the demands that future recall will place on this information and study in a way that will match those demands.
Vase or faces?
Computational models of memory encoding have been developed in order to better understand and simulate the mostly expected, yet sometimes wildly unpredictable, behaviors of human memory. Different models have been developed for different memory tasks, which include item recognition, cued recall, free recall, and sequence memory, in an attempt to accurately explain experimentally observed behaviors.
In item recognition, one is asked whether or not a given probe item has been seen before. It is important to note that the recognition of an item can include context. That is, one can be asked whether an item has been seen in a study list. So even though one may have seen the word "apple" sometime during their life, if it was not on the study list, it should not be recalled.
Item recognition can be modeled using Multiple trace theory and the attribute-similarity model.[37] In brief, every item that one sees can be represented as a vector of the item’s attributes, which is extended by a vector representing the context at the time of encoding, and is stored in a memory matrix of all items ever seen. When a probe item is presented, the sum of the similarities to each item in the matrix (which is inversely proportional to the sum of the distances between the probe vector and each item in the memory matrix) is computed. If the similarity is above a threshold value, one would respond, "Yes, I recognize that item." Given that context continually drifts by nature of a random walk, more recently seen items, which each share a similar context vector to the context vector at the time of the recognition task, are more likely to be recognized than items seen longer ago.
In cued recall, one is asked to recall the item that was paired with a given probe item. For example, one can be given a list of name-face pairs, and later be asked to recall the associated name given a face.
Cued recall can be explained by extending the attribute-similarity model used for item recognition. Because in cued recall, a wrong response can be given for a probe item, the model has to be extended accordingly to account for that. This can be achieved by adding noise to the item vectors when they are stored in the memory matrix. Furthermore, cued recall can be modeled in a probabilistic manner such that for every item stored in the memory matrix, the more similar it is to the probe item, the more likely it is to be recalled. Because the items in the memory matrix contain noise in their values, this model can account for incorrect recalls, such as mistakenly calling a person by the wrong name.
In free recall, one is allowed to recall items that were learned in any order. For example, you could be asked to name as many countries in Europe as you can. Free recall can be modeled using SAM (Search of Associative Memory) which is based on the dual-store model, first proposed by Atkinson and Shiffrin in 1968.[38] SAM consists of two main components: short-term store (STS) and long-term store (LTS). In brief, when an item is seen, it is pushed into STS where it resides with other items also in STS, until it displaced and put into LTS. The longer the an item has been in STS, the more likely it is to be displaced by a new item. When items co-reside in STS, the links between those items are strengthened. Furthermore, SAM assumes that items in STS are always available for immediate recall.
SAM explains both primacy and recency effects. Probabilistically, items at the beginning of the list are more likely to remain in STS, and thus have more opportunities to strengthen their links to other items. As a result, items at the beginning of the list are made more likely to be recalled in a free-recall task (primacy effect). Because of the assumption that items in STS are always available for immediate recall, given that there were no significant distractors between learning and recall, items at the end of the list can be recalled excellently (recency effect).
Incidentally, the idea of STS and LTS was motivated by the architecture of computers, which contain short-term and long-term storage.
Sequence memory is responsible for how we remember lists of things, in which ordering matters. For example, telephone numbers are an ordered list of one digit numbers. There are currently two main computational memory models that can be applied to sequence encoding: associative chaining and positional coding.
Associative chaining theory states that every item in a list is linked to its forward and backward neighbors, with forward links being stronger than backward links, and links to closer neighbors being stronger than links to farther neighbors. For example, associative chaining predicts the tendencies of transposition errors, which occur most often with items in nearby positions. An example of a transposition error would be recalling the sequence "apple, orange, banana" instead of "apple, banana, orange."
Positional coding theory suggests that every item in a list is associated to its position in the list. For example, if the list is "apple, banana, orange, mango" apple will be associated to list position 1, banana to 2, orange to 3, and mango to 4. Furthermore, each item is also, albeit more weakly, associated to its index +/- 1, even more weakly to +/- 2, and so forth. So banana is associated not only to its actual index 2, but also to 1, 3, and 4, with varying degrees of strength. For example, positional coding can be used to explain the effects of recency and primacy. Because items at the beginning and end of a list have fewer close neighbors compared to items in the middle of the list, they have less competition for correct recall.
Although the models of associative chaining and positional coding are able to explain a great amount of behavior seen for sequence memory, they are far from perfect. For example, neither chaining nor positional coding is able to properly illustrate the details of the Ranschburg effect, which reports that sequences of items that contain repeated items are harder to reproduce than sequences of unrepeated items. Associative chaining predicts that recall of lists containing repeated items is impaired because recall of any repeated item would cue not only its true successor but also the successors of all other instances of the item. However, experimental data have shown that spaced repetition of items resulted in impaired recall of the second occurrence of the repeated item.[39] Furthermore, it had no measurable effect on the recall of the items that followed the repeated items, contradicting the prediction of associative chaining. Positional coding predicts that repeated items will have no effect on recall, since the positions for each item in the list act as independent cues for the items, including the repeated items. That is, there is no difference between the similarity between any two items and repeated items. This, again, is not consistent with the data.
Because no comprehensive model has been defined for sequence memory to this day, it makes for an interesting area of research.
Encoding is still relatively new and unexplored but origins of encoding date back to age old philosophers such as Aristotle and Plato. A major figure in the history of encoding is Hermann Ebbinghaus (1850–1909). Ebbinghaus was a pioneer in the field of memory research. Using himself as a subject he studied how we learn and forget information by repeating a list of nonsense syllables to the rhythm of a metronome until they were committed to his memory.[40] These experiments lead him to suggest the learning curve.[40] He used these relatively meaningless words so that prior associations between meaningful words would not influence learning. He found that lists that allowed associations to be made and semantic meaning was apparent were easier to recall. Ebbinghaus’ results paved the way for experimental psychology in memory and other mental processes.
During the 1900s further progress in memory research was made. Ivan Pavlov began research pertaining to classical conditioning. His research demonstrated the ability to create a semantic relationship between two unrelated items. In 1932 Bartlett proposed the idea of mental schemas. This model proposed that whether new information would be encoded was dependent on its consistency with prior knowledge (mental schemas).[41] This model also suggested that information not present at the time of encoding would be added to memory if it was based on schematic knowledge of the world.[41] In this way, encoding was found to be influenced by prior knowledge. With the advance of Gestalt theory, came the realisation that memory for encoded information was often perceived as different than the stimuli that triggered it. In addition it was also influenced by the context that the stimuli were embedded in.
With advances in technology, the field of neuropsychology emerged and with it a biological basis for theories of encoding. In 1949 Hebblooked at the neuroscience aspect of encoding and stated that "neurons that fire together wire together" implying that encoding occurred as connections between neurons were established through repeated use. The 1950s and 60’s saw a shift to the information processing approach to memory based on the invention of computers, followed by the initial suggestion that encoding was the process by which information is entered into memory. At this time George Armitage Miller in 1956 wrote his paper on how our short-term memory is limited to 7 items, plus-or-minus 2 called The Magical Number Seven, Plus or Minus Two. This number was appended when studies done on chunking revealed that seven, plus or minus two could also refer to seven "packets of information". In 1974, Alan Baddeley andGraham Hitch proposed their model of working memory, which consists of the central executive, visuo-spatial sketchpad, and phonological loop as a method of encoding. In 2000, Baddeley added the episodic buffer.[1] Simultaneously Endel Tulving (1983) proposed the idea of encoding specificity whereby context was again noted as an influence on encoding.
|title=
(help)From Wikipedia, the free encyclopedia
This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed. (June 2007)
Storage in human memory is one of three core process of memory, along with recall and encoding. It refers to the retention of information, which has been achieved through the encoding process, in the brain for a prolonged period of time until it is accessed through recall. Modern memory psychology differentiates the two distinct type of memory storage: short-term memory and long-term memory. In addition, different memory models have suggested variations of existing short-term and long-term memory to account for different ways of storing memory.
Main article: Short-term memory
The short-term memory refers to the ability to hold information from immediate past for a short duration of time.[1] According to the Atkinson-Shiffrin Model of Memory,[2] in the process of Encoding, perceived memory[clarification needed] enters the brain and can be quickly forgotten if the sensory information is not stored further in the short-term memory. The information is readily accessible in the short-term memory for only a short time. Baddeley suggested that memory stored in short-term memory is continuously deteriorating, which can eventually lead to forgetting in the absence of rehearsal.[3] George A. Miller suggested in his paper that the capacity of the short-term memory storage is approximately seven items, plus or minus two,[4] but modern researchers are showing that this itself is subject to numerous variability, including the stored items’ phonological properties.[5]
Main article: Long-term memory
In contrast to the short-term memory, long-term memory refers to the ability to hold information for a prolonged period of time. The Atkinson-Shiffrin Model of Memory (Atkinson 1968) suggests that the item stored in short-term memory moves to Long-Term Memory through repeated practice and use. Miller (1956), while suggesting limited capacity for short-term memory, suggested that the capacity of long-term memory is much greater than that of short-term memory; such have led to development of models that assume long-term memory is capable of unlimited memory. The duration of long-term memory, on the other hand, is not permanent; unless memory is occasionally recalled, which, according to the Dual-Store Memory Search Model, enhances the long-term memory, the memory may be failed to recall on later occasions.
Varieties of different memory models have been proposed to account for different types of recall processes, including cued recall, free recall, and serial recall. In order to explain the recall process, however, the memory model must identify how an encoded memory can reside in the memory storage for a prolonged period of time until the memory is accessed again, during the recall process. Not all models, however, use the terminology of short-term and long-term memory to explain memory storage; the Dual-Store theory and refined version of Atkinson-Shiffrin Model of Memory (Atkinson 1968) uses both short-term and long-term memory storage, but others do not.
The multi-trace distributed memory model suggests that the memories that are being encoded are converted to vectors of values, with each scalar quantity of a vector representing a different attribute of the item to be encoded. Such notion was first suggested by early theories of Hooke (1969) and Semon (1923). A single memory is distributed to multiple attributes, or features, so that each attribute represents one aspect of the memory being encoded. Such vector of values is then added into the memory array or a matrix, composed of different traces or vectors of memory.
Therefore, every time a new memory is encoded, such memory is converted to a vector or a trace, composed of scalar quantities representing variety of attributes, which is then added to pre-existing and ever-growing memory matrix, composed of multiple traces – hence the name of the model.
Once memory traces corresponding to specific memory are stored in the matrix, in order to retrieve the memory for the recall process, one must cue the memory matrix with a specific probe, which would be used to calculate the similarity between the test vector and the vectors stored in the memory matrix. As the memory matrix is constantly growing with new traces being added in, one would have to perform a parallel search through all the traces present within the memory matrix in order to calculate the similarity, whose result can be used to perform either associative recognition, or with probabilistic choice rule, used to perform a cued recall.
While it has been said that human memory seems to be capable of storing a great amount of information, to the extent that some had thought an infinite amount, the presence of such ever-growing matrix within human memory sounds implausible. In addition, the model suggests that in order to perform the recall process, parallel-search between every single trace that resides within the ever-growing matrix is required, which also raises doubt on whether such computations can be done in a short amount of time. Such doubts, however, have been challenged by findings of Gallistel and King[6] who present evidence on the brain’s enormous computational abilities that can be in support of such parallel support.
Main article: Hopfield network
Multi-Trace model had two key limitations: one, notion of the presence of ever-growing matrix within human memory sounds implausible, and two, computational searches for similarity against millions of traces that would be present within memory matrix to calculate similarity sounds far beyond the scope of the human recalling process. The neural network model is the ideal model in this case, as it overcomes the limitations posed by the multi-trace model and maintains the useful features of the model as well.
The Neural Network model assumes that ‘neurons’ in a neural network form a complex network with other neurons, forming a highly interconnected network; each neuron is characterized by the activation value, and the connection between two neurons is characterized by the weight value. Interaction between each neuron is characterized by the McCullough-Pitts Dynamical Rule,[7] and change of weight and connections between neurons resulting from learning is represented by the Hebbian Learning Rule.[8][9]
Anderson[10] shows that combination of Hebbian Learning rule and McCullough-Pitts Dynamical rule allow network to generate a weight matrix that can store associations between different memory patterns – such matrix is the form of memory storage for the Neural Network Model. Major differences between the matrix of multiple traces hypothesis and the neural network model is that while new memory indicates extension of the existing matrix for the multiple traces hypothesis, weight matrix of the neural network model does not extend; rather, the weight is said to be updated with introduction of new association between neurons.
Using the weight matrix and Learning / Dynamic rule, neurons cued with one value can retrieve the different value that is ideally a close approximation of the desired target memory vector.
As the Anderson’s weight matrix between neurons will only retrieve the approximation of the target item when cued, modified version of the model was sought in order to be able to recall the exact target memory when cued. The Hopfield Net[11] is currently the simplest and most popular neural network model of associative memory; the model allows the recall of clear target vector when cued with the part or the ‘noisy’ version of the vector.
The weight matrix of Hopfield Net, that stores the memory, closely resembles the one used in weight matrix proposed by Anderson. Again, when new association is introduced, the weight matrix is said to be ‘updated’ to accommodate the introduction of new memory; it is stored until the matrix is cued by a different vector.
First developed by Atkinson and Shiffrin (1968), and refined by others, including Raajimakers and Shiffrin,[12] the Dual-store Memory Search model, now referred to as SAM or Search of Associative Memory model, remains as one of the most influential computational models of memory [8]. The model utilizes both Short-Term memory, termed Short-Term Store (STS), and Long-Term Memory, termed Long-Term Store (LTS) or Episodic Matrix, in its mechanism.
When an item is first encoded, it is introduced into the Short-Term Store. While the item stays in the Short-Term Store, vector representations in Long-Term store go through a variety of associations. Items introduced in Short-Term Store go through three different types of association: autoassociation, the self-association in Long-Term Store, Heteroassociation, the inter-item association in Long-Term Store, and the Context Association, which refers to association between the item and its encoded context. For each item in Short-Term Store, the longer the duration of time an item resides within the Short-Term Store, the greater its association with itself will be with other items that co-reside within Short-Term store, and with its encoded context.
The size of the Short-Term store is defined by a parameter, r. As an item is introduced into the Short-Term Store, and if the Short-Term store has already been occupied by a maximum number of items, the item will probably drop out of the Short-Term Storage.[13]
As items co-reside in the short-term store, their associations are constantly being updated in the Long-term store matrix. The strength of association between two items depends on the amount of time the two memory items spend together within the short-term store, known as the contiguity effect. Two items that are contiguous have greater associative strength and are often recalled together from Long-Term Storage.
Furthermore, Primacy effect, an effect seen in memory recall paradigm, reveals that the first few items in a list have a greater chance of being recalled over others in the STS, while older items have a greater chance of dropping out of STS. The item that managed to stay in the STS for an extended amount of time would have formed a stronger autoassociation, heteroassociation and context association than others, ultimately leading to greater associative strength and a higher chance of being recalled.
Recency effect of recall experiments is when the last few items in a list are recalled exceptionally well over other items, and can be explained by the Short-Term Store. When the study of a given list of memory has been finished, what resides in the Short-Term store in the end would be the last few items that were introduced last. Because Short-Term store is readily accessible, such items would be recalled before any item stored within long-term store. This recall accessibility also explains the fragile nature of Recency Effect, which is that the simplest distractors can cause a person to forget the last few items in the list, as the last items would not have had enough time to form any meaningful association within the Long-Term Store. If the information is dropped out of the Short-Term store by distractors, the probability of the last items being recalled would be expected to be lower than even the pre-recency items in the middle of the list.
The Dual-Store SAM model also utilizes memory storage, which itself can be classified as a type of long-term storage: the Semantic Matrix. The Long-Term store in SAM represents the episodic memory, which only deals with new associations that were formed during the study of an experimental list; pre-existing associations between items of the list, then, need to be represented on different matrix, the Semantic matrix. The semantic matrix remains as the another source of information that is not modified by episodic associations that are formed during the exam.[14]
Thus, the two types of memory storage, Short-Term Store and Long-Term Store, are utilized in the SAM model. In the recall process, items residing in Short-Term memory store will be recalled first, followed by items residing in Long-Term Store, where the probability of being recalled is proportional to the strength of the association present within the long-term store. Another Memory storage, the Semantic Matrix, is used to explain the semantic effect associated with memory recall.
From Wikipedia, the free encyclopedia
"Recollection" redirects here. For other uses, see Recollection (disambiguation).
Recall in memory refers to the retrieval of events or information from the past. Along with encoding and storage, it is one of the three core processes of memory. There are three main types of recall: free recall, cued recall and serial recall. Psychologists test these forms of recall as a way to study the memory processes of humans[1] and animals.[2] Two main theories of the process of recall are the Two-Stage Theory and the theory of Encoding Specificity.
The Austin Simonson theory states that the process of recall begins with a search and retrieval process, and then a decision or recognition process where the correct information is chosen from what has been retrieved. In this theory, recognition only involves the latter of these two stages, or processes, and this is thought to account for the superiority of the recognition process over recall. Recognition only involves one process in which error or failure may occur, while recall involves two.[3] However, recall has been found to be superior to recognition in some cases, such as a failure to recognize words that can later be recalled.[4]
The theory of encoding specificity finds similarities between the process of recognition and that of recall. The encoding specificity principle states that memory utilizes information from the memory trace, or the situation in which it was learned, and from the environment in which it is retrieved. Encoding specificity helps to take into account context cues because of its focus on the retrieval environment, and it also accounts for the fact recognition may not always be superior to recall.[4]
Philosophical questions regarding how people acquire knowledge about their world spurred the study of memory and learning.[5] Recall is a major part of the study of memory and often comes into play in all research. For this reason, the main studies on memory in general will also provide a history to the study of recall.
In 1885, Hermann Ebbinghaus created nonsense syllables, combinations of letters that do not follow grammatical rules and have no meaning, to test his own memory. He would memorize a list of nonsense syllables and then test his recall of that list over varying time periods. He discovered that memory loss occurred rapidly over the first few hours or days, but showed a more steady, gradual decline over subsequent days, weeks, and months. Furthermore, Ebbinghaus discovered that multiple learning, over-learning, and spacing study times increased retention of information.[6] Ebbinghaus’ research influenced much of the research conducted on memory and recall throughout the twentieth century.
Frederic Bartlett was a prominent researcher in the field of memory during the mid-twentieth century. He was a British experimental psychologist who focused on the mistakes people made when recalling new information. One of his well known works wasRemembering: A Study in Experimental and Social Psychology, which he published in 1932. He is well known for his use of North American Native folk tales, including The War of the Ghosts.[7] He would provide participants in his study with an excerpt from a story and then asked them to recall it as accurately as they could.[7] Retention intervals would vary from directly after reading the story to days later. Bartlett found that people strive for meaning, by attempting to understand the overall meaning of the story. Since the folk tale included supernatural elements, people would rationalize them to make them fit better with their own culture. Ultimately, Bartlett argued that the mistakes that the participants made could be attributed to schematic intrusions.[7] Their current sets of knowledge intruded on their accurately recalling the folk tale.
In the 1950s there was a change in the overall study of memory that has come to be known as the cognitive revolution. This included new theories on how to view memory, often likening it to a computer processing model. Two important books influenced the revolution: Plans and Structures of Behavior by George Miller, Eugene Galanter, and Karl H. Pribram in 1960 and Cognitive Psychology by Ulric Neisser in 1967.[5] Both provided arguments for an information-processing view of the human mind. Allen Newell and Herbert A. Simon constructed computer programs that simulated the thought processes people go through when solving different kinds of problems.[8]
In the 1960s, interest in short-term memory (STM) increased. Before the 1960s, there was very little research that studied the workings of short-term memory and rapid memory loss. Lloyd and Margaret Peterson observed that when people are given a short list of words or letters and then are distracted and occupied with another task for few seconds, their memory for the list is greatly decreased.[5] Atkinson and Shiffrin (1973) created the short term memory model, which became the popular model for studying short term memory.[9]
The next major development in the study of memory recall was Endel Tulving’s proposition of two kinds of memory: episodic and semantic. Tulving described episodic memory as a memory about a specific event that occurred at a particular time and place, for example what you got for your 10th birthday. Semantic memories are abstract words, concepts, and rules stored in long-term memory.[10] Furthermore, Endel Tulving devised the encoding specificity principle in 1983, which explains the importance of the relation between the encoding of information and then recalling that information. To explain further, the encoding specificity principle means that a person is more likely to recall information if the recall cues match or are similar to the encoding cues.[11]
The 1960s also saw a development in the study of visual imagery and how it is recalled. This research was led by Allan Paivio, who found that the more image-arousing a word was the more likely it would be recalled in either free recall or paired associates.[12]
There has been a considerable amount of research into the workings of memory, and specifically recall since the 1980s. The previously mentioned research was developed and improved upon, and new research was and still is being conducted.
Free recall describes the process in which a person is given a list of items to remember and then is tested by being asked to recall them in any order.[5] Free recall often displays evidence of primacy and recency effects. Primacy effects are displayed when the person recalls items presented at the beginning of the list earlier and more often. The recency effect is when the person recalls items presented at the end of the list earlier and more often.[5]
Cued Recall is when a person is given a list of items to remember and is then tested with cues to remember material. Researchers have used this procedure to test memory. Participants are given pairs, usually of words, A1-B1, A2-B2…AL-BL, (L is the number of pairs in a list) to study. Then the experimenter gives the participant a word to cue the participant to recall the word with which it was originally paired. The word presentation can either be visual or auditory.
There are two basic experimental methods used to conduct cued recall, the study-test method and the anticipation method. In the study-test method participants study a list of word pairs presented individually. Immediately after or after a time delay, participants are tested in the study phase of the experiment on the word pairs just previously studied. One word of each pair is presented in a random order and the participant is asked to recall the item with which it was originally paired. The participant can be tested for either forward recall, Ai is presented as a cue for Bi, or backward recall, Bi is presented as a cue for Ai. In the anticipation method, participants are shown Ai and are asked to anticipate the word paired with it, Bi. If the participant cannot recall the word, the answer is revealed. During an experiment using the anticipation method, the list of words is repeated until a certain percentage of Bi words are recalled.
The learning curve for cued recall increases systematically with the number of trials completed. This result has caused a debate about whether or not learning is all-or-none. One theory is that learning is incremental and that the recall of each word pair is strengthened with repetition. Another theory suggests that learning is all-or-none, that is one learns the word pair in a single trial and memory performance is due to the average learned pairs, some of which are learned on earlier trials and some on later trials. To examine the validity of these theories researchers have performed memory experiments. In one experiment, Irwin Rock University of Illinois had a control group and experimental group learn pairs of words. The control group studied word pairs that were repeated until the participants learned all the word pairs. In the experimental group, the learned pairs remained in the list while unlearned pairs were substituted with recombinations of previous words. Rock believed that associations between two items would be strengthened if learning were incremental even when pairs are not correctly recalled. His hypothesis was that the control group would have a higher correct recall probability than the experimental group. He thought that repetition would increase the strength of the word pair until the strength reaches a threshold needed to produce an overt response. If learning were all or none, then the control group and the experimental group should learn the word pairs at the same rate. Rock found experimentally there was little difference in learning rates between the two groups. However, Rock’s work did not settle the controversy because in his experiment he rearranged replaced word pairs that could be either easier or harder to learn than the original words in the word- digit pair. In further experiments that addressed the question, there were mixed results. The incremental learning hypothesis is supported by the notion that awhile after Ai-Bi pairs are learned, the recall time to recall Bi decreases with continued learning trails.[13]
Another theory that can be tested using cued recall is symmetry of forward and backward recall. Forward recall is generally assumed to be easier than backward recall, i.e. forward recall is stronger than backward recall. This is generally true for long sequences of word or letters such as the alphabet. In one view, the independent associations hypothesis, the strength of forward and backward recall are hypothesized to be independent of each other. To confirm this hypothesis, Dr. George Wolford tested participants’ forward and backward recall and found that forward and backward recall are independent of each other. The probability of correct forward recall was .47 for word pair associations and the probability of correct backward recall of word pair associations was .25.[14] However in another view, the associative symmetry hypothesis, the strengths of forward and backward recall are about equal and highly correlated. In S.E Asch from Swathmore College and S. M Ebenholtz’s experiment, participants learned pairs of nonsense syllables by anticipation recall. After reaching a certain threshold of learning, the participants were tested by free recall to determine all pairs and single items they could remember. These researchers found that backward association was greatly weaker than forward association. However, when the availability of forward and backward recall were basically the same, there was little difference between forward and backward recall.[15] Some scientists including Asch and Ebenholtz believe in the independent association hypothesis think that the equal strengths of forward and backward recall are compatible with their hypothesis because forward and backward recall could be independent but with equal strengths. However associative symmetry theorists interpreted the data to mean that the results fit their hypothesis.
Another study done using cued recall found that learning occurs during test trials. Mark Carrier and Pashler (1992) found that the group with a study-only phase makes 10% more errors than the group with a test-study phase. In the study-only phase, participants were given Ai-Bi, where Ai was an English word and Bi was a Siberian Eskimo Yupik word. In the test study phase, participants first attempted to recall Bi given Ai as a cue then they were shown Ai-Bi pair together. This result suggests that after participants learn something, testing their memory with mental operations helps later recall. The act of recalling instead of restudying creates new and longer lasting connection between Ai and Bi.[16]
Another study showed that when lists are tested immediately after study, the last couple of pairs are remembered best. After a five second delay, the recall of recently studied words diminishes. However, word pairs at the beginning of a list still show better recall. Moreover, in a longer list, the absolute number of word pairs recalled is greater but in a shorter list of word pairs, the percentage of word pairs recalled is greater.
Sometimes, when recalling word pairs, there is an intrusion. An intrusion is an error that participants make when they attempt to recall a word based on a cue of that word pair. Intrusions tend to have either semantic attributes in common with the correct word not recalled or have been previously studied in another word pair on the current list or a previously studied list or were close in time to the cue item. When two items are similar, an intrusion may occur. Professor Kahana and Marieke Vugt at the University of Pennsylvania examined the effects of face similarity for face-name associations. In the first experiment, they wanted to determine if performance of recall would vary with the number of faces in the study set similar to the cue face. Faces were similar if the radius of the faces were within a range. The number of faces within a radius is called a neighborhood density. They found that the recall of a name to face exhibited a lower accuracy and slower reaction time for faces with a greater neighborhood density. The more similarity that two faces have, the greater the probability for interference between the two faces. When cued with face A name B may be recalled if face A and B are similar. The probability of correct recall came from the number of faces with similar faces.[17]
Cues act as guides to what the person is supposed to remember. A cue can be virtually anything that may act as a reminder, e.g. a smell, song, color, place etc. In contrast to free recall, the subject is prompted to remember a certain item on the list or remember the list in a certain order. Cued recall also plays into free recall because when cues are provided to a subject, they will remember items on the list that they did not originally recall without a cue. Tulving explained this phenomenon in his research. When he gave participants associative cues to items that they did not originally recall and that were thought to be lost to memory, the participants were able to recall the item.[18]
Serial recall is the ability to recall items or events in the order in which they occurred.[19] The ability of humans to store items in memory and recall them is important to the use of language. Imagine recalling the different parts of a sentence, but in the wrong order. The ability to recall in serial order has been found not only in humans, but in a number of non-human primate species and some non-primates.[2] Imagine mixing up the order of phonemes, or meaningful units of sound, in a word so that "slight" becomes "style." Serial-order also helps us remember the order of events in our lives, our autobiographical memories. Our memory of our past appears to exist on a continuum on which more recent events are more easily remembered in order.[19]
Serial recall in long-term memory (LTM) differs from serial recall in short-term memory (STM). To store a sequence in LTM, the sequence is repeated over time until it is represented in memory as a whole, rather than as a series of items. In this way, there is no need to remember the relationships between the items and their original positions.[2] In STM, immediate serial recall (ISR) has been thought to result from one of two mechanisms. The first refers to ISR as a result of associations between the items and their positions in a sequence, while the second refers to associations between items. These associations between items are referred to as chaining, and according to research it is an unlikely mechanism. Position-item relationships do not account for recency and primacy effects, or the phonological similarity effect. The Primacy Model moves away from these two assumptions, suggesting that ISR results from a gradient of activation levels where each item has a particular level of activation that corresponds to its position.[20] Research has supported the fact that immediate serial recall performance is much better when the list is homogenous (of the same semantic category) than when they are heterogeneous (of different semantic category). This suggests that semantic representations are beneficial to immediate serial recall performance.[21] Short-term serial recall is also affected by similar sounding items, as recall is lower (remembered more poorly) than items that do not sound alike. This is true when lists are tested independently (when comparing two separate lists of similar sounding and not similar sounding items) as well as when tested using a mixed list. Alan Baddeley first reported such an experiment in which items within a list were either mutually dissimilar or highly similar.
There is evidence indicating that rhythm is highly sensitive to competing motor production. Actions such as paced finger tapping can have an effect on recall as the disruptive impact of paced finger tapping, but lack of consistent effect of paced irrelevant sound, is indicative of motor feedback from the tapping task disrupting rehearsal and storage.[22]
Seven different effects are generally seen in serial recall studies with humans:
1. List length effect
Ability to serial recall decreases as the length of the list or sequence increases.
2. Primacy and recency effects
Primacy effects refer to better recall of items earlier in the sequence, while recency effects refer to better recall of the last few items. Recency effects are seen more with auditory stimuli rather than verbal stimuli as auditory presentation seems to protect the end of lists from output interference.[23]
3. Transposition gradients
Transposition gradients refer to the fact that recall tends to be better to recognize what an item is rather than the order of items in a sequence.
4. Item confusion errors
When an item is incorrectly recalled, there is a tendency to respond with an item that resembles the original item in that position.
5. Repetition errors
These occur during the recall of a sequence when an item from an earlier position in the sequence is given again in another position. This effect is fairly rare in humans.
6. Fill-in effects
If an item is recalled incorrectly at an earlier position than its original place, there is a tendency for the next item recalled to be the item that was displaced by this error. For example, if the sequence is '1234' and recall began '124', then the next item is likely to be ‘3’.
7. Protrusion effects
These occur when an item from a previous list or test is accidentally recalled on a new list or test. This item is likely to be recalled at its position from the original trial.[2]
8. Word-length effects Short words are recalled more accurately than longer words.[24]
The anterior cingulate cortex, globus pallidus, thalamus, and cerebellum show higher activation during recall than during recognition which suggests that these components of the cerebello-frontal pathway play a role in recall processes that they do not in recognition. Although recall and recognition are considered separate processes, it should be noted that they are both most likely constitute components of distributed networks of brain regions.[25]
According to neuroimaging data, PET studies on recall and recognition have consistently found increases in regional cerebral blood flow (RCBF) in the following six brain regions: (1) the prefrontal cortex, particularly on the right hemisphere; (2) the hippocampal and parahippocampal regions of the medial temporal lobe; (3) the anterior cingulate cortex; (4) the posterior midline area that includes posterior cingulate, retrosplenial (see retrosplenial region),precuneus, and cuneus regions; (5) the inferior parietal cortex, especially on the right hemisphere; and (6) the cerebellum, particularly on the left.[26][27]
The specific role of each of the six main regions in episodic retrieval is still unclear, but some ideas have been suggested. The right prefrontal cortex has been related to retrieval attempt;[26][27] the medial temporal lobes to conscious recollection;[28] the anterior cingulate to response selection;[29] the posterior midline region to imagery;[26][29][30][31] the inferior parietal to awareness of space;[32] and the cerebellum to self-initiated retrieval .[33]
In recent research, a group of subjects was faced with remembering a list of items and then measured when trying to recall said items. The evoked potentials and hemodynamic activity measured during encoding were found to exhibit reliable differences between subsequently recalled and not recalled items. This effect has been termed the subsequent memory effect (SME).[34][35] This difference in these specific brain regions determines whether or not an item is recalled. A study by Fernandez et al. has shown that the differences that predict recall appear both as a negative deflection in the rhinal cortex of an event-related potential (ERP)400 ms after stimulus exposure, and as a positive hippocampal ERP beginning 800 ms after stimulus onset.[36] This means that recall only occurs if these two brain regions (rhinal cortex and hippocampus) are activated in synchrony.
The effect of attention on memory recall has surprising results. It seems that the only time attention largely affects memory is during the encoding phase. During this phase, performing a parallel task can severely impair retrieval success.[37] It is believed that this phase requires much attention to properly encode the information at hand, and thus a distractor task does not allow proper input and reduces the amount of information learned. Experiments have been done that suggest that the early encoding phase, in which words are identified, is the source of the word frequency effect. Because rarer words (low frequency) are composed of unusual and features that may be difficult to encode, they require more attention. Differences in letter frequency were controlled for. Next, we considered the late phase of encoding, in which meaning is elaborated and connected to the participants’ semantic network. The experimenters explored the hypothesis that semantic information does not contribute to the word frequency effect and found a mirror patterned normative frequency effect when words were studied and tested. When study, test, or both involved objects, the mirror pattern was disrupted and normative frequency had little or no effect on recognition memory. Much of the recognition memory literature has focused on distinguishing between memory models based on the nature of retrieval from memory.[38]However, when looking at the effect of attention on memory retrieval, it has been found that there are only slight inconsistent impairments. This evidence suggests that memory retrieval is an automatic process. One effect of attention on memory recall is that of latency and retrieval time.[39] This is especially evident in free recall.[40] The competition provided at the time of recall due to divided attention slows down the process, yet has little to no effect on its accuracy. Another possible finding for the minimal effect of divided attention is that the process of recall may include less parallel processing than other memory processes.[41] It has also been observed that different parts of the brain are at work depending on whether one is recalling with full rather than divided attention.[42] Evidence for this comes from fMRI data. Performing a secondary task concurrently with a study task has a detrimental effect on later memory for studied items. To investigate the mechanisms underlying this effect, the processing resources available for an incidental encoding task were varied by manipulating secondary task difficulty. Greater activity at study for words later remembered versus words later forgotten-were identified in the left ventral inferior frontal gyrus and the left anterior hippocampus. These effects did not vary according to whether the encoding task was performed concurrently with the easy or the hard secondary task. However, as secondary task difficulty increased, study-item activity declined and auditory-item activity increased in dorsolateral prefrontal and superior parietal regions that have been proved to be in the support of executive and control functions. The findings suggest that dividing attention during encoding influences the probability of engaging the encoding operations that support later episodic memory, but does not alter the nature of the operations themselves. The findings further suggest that the probability of engaging these encoding operations depends on the level of general processing resources engaged in service of the study task.[43]
Motivation is a factor that encourages a person to perform and succeed at the task at hand. Pavlov's research on classical conditioning illustrates positive and negative reinforcement as a motivational tool.[44] Several forms of presented incentive, or personal fear of failure.[45] Any form of motivation thus generally leads a person to better recall. In an experiment done by Roebers, Moga and Schneider (2001), participants were placed in either forced report, free report or free report plus incentive groups. In each group, they found that the amount of correct information recalled did not differ, yet in the group where participants were given an incentive they had higher accuracy results.[46] This means that presenting participants with an encouragement to provide correct information motivates them to be more precise. However, this is only true if the perception is that success is providing correct information. When it is believed that success is the completion of the task rather than the accuracy of that completion, the number of responses is higher, yet its accuracy is lowered. This shows that the results are dependent on how success is defined to the participant. In the Roebers, Moga and Schneider (2001) experiment, the participants that were placed in the forced response group had the lowest overall accuracy. They had no motivation to provide accurate responses and were forced to respond even when they were unsure of the answer. Another study done by Hill RD, Storandt M, Simeone C tests the impact of memory skills training and external reward on free recall of serial word lists.[47] In contrast to older learners, similar effects were seen in children.[48] Two studies were conducted to test incentive magnitude effects on free recall. Experiment I examined whether two incentive levels would differentially influence rehearsal of words paired with the incentive values. Fifth and eighth graders and college adults were tested in conditions in which they were instructed to (a) do all rehearsal overtly or (b) engage in a counting task subsequent to item presentation and refrain from overt and covert rehearsal. College subjects rehearsed and recalled significantly more 10¢ than 1¢ words. Eighth graders tended to favor 10¢ items in recall and rehearsal, but the differences were of questionable reliability. Fifth graders failed to produce reliable Incentive Level effects. Experiment II showed that fifth graders, as well as older subjects, recalled more high-incentive words under standard free-recall instructions in which rehearsal was presumed to be covert. Results support theories emphasizing rehearsal as a mediator of incentive level effects on learning. These results lead to the conclusion that depending on how success is defined to the person, motivation increases a person’s inclination to succeed at appropriate recall.[46]
In the absence of interference, there are two factors at play when recalling a list of items: the recency and the primacy effects. The recency effect occurs when the short-term memory is used to remember the most recent items, and the primacy effect occurs when the long-term memory has encoded the earlier items. The recency effect can be eliminated if there is a period of interference between the input and the output of information extending longer than the holding time of short-term memory (15–30 seconds). This occurs when a person is given subsequent information to recall preceding the recall of the initial information.[49] The primacy effect, however, is not affected by the interference of recall. The elimination of the last few items from memory is due to the displacement of these items from short term memory, by the distracting task. As they have not been recited and rehearsed, they are not moved into long-term memory and are thus lost. A task as simple as counting backwards can change memory recall; however an empty delay interval has no effect.[50] This is because the person can continue to rehearse the items in their working memory to be remembered without interference. Cohen (1989) found that there is better recall for an action in the presence of interference if that action is physically performed during the encoding phase.[50] It has also been found that recalling some items can interfere and inhibit the recall of other items.[51] Another stream of thought and evidence suggests that the effects of interference on recency and primacy are relative, determined by the ratio rule (retention interval to inter item presentation distractor rate) and they exhibit time-scale invariance.[52] Three experiments investigated serial position effects in immediate and final free recall. Each word in a 10-item list was both preceded and followed by a 15-sec period of distraction activity. In Experiment 1, half of the lists were immediately followed by either a recall test or a recognition test; the remaining lists were not tested, but were followed by a different distraction activity. After presentation of all lists, a final recall or recognition test was given. Primacy was observed only in immediate free recall and in all final tests following immediate free recall, demonstrating that primacy develops from a free-recall storage strategy. No recency was observed in Experiment 1. In Experiment 2, every list was followed by an immediate free-recall test, with a final free-recall test after the last list. The primacy results of Experiment 1 were replicated. Furthermore, the appearance of recency in Expriment 2 suggests that recency results from a retrieval strategy that failed to develop in Experiment 1 because some lists were not tested immediately. To eliminate an artifact account, Experiment 3 used an experimenter-paced distractor task and replicated the findings of Experiment 2, which used a subject-paced distractar task. Contrary to previous claims, the pattern of results in the continuous distractor paradigm is seen as completely consistent with the account offered by multistore models of serial position effects in standard free recall.
Context-dependency effects on recall are typically interpreted as evidence that the characteristics of the environment are encoded as part of the memory trace and can be used to enhance retrieval of the other information in the trace.[53] In other words, you can recall more when the environments are similar in both the learning and recall phases. Context cues appear to be important in the retrieval of newly learned meaningful information. In a classic study by Godden and Baddelley (1975), they demonstrated that deep-sea divers recalled their training more effectively when trained underwater, rather than being trained on land.[54] An academic application would be that students may perform better on exams by studying in silence, because exams are usually done in silence.[55]
State-dependent retrieval is demonstrated when material learned under one State is best recalled in that same state. A study by Carter and Cassady (1998) showed this effect withantihistamine.[56] In other words, if you study while on hay fever tablets, then you will recall more of what you studied if you test yourself while on antihistamines in comparison to testing yourself while not on antihistamines after having studied on antihistamines.
A study by Block and Ghoneim (2000) found that, relative to a matched group of healthy, non-drug-using controls, heavy marijuana use is associated with small but significant impairments in memory retrieval.[57]Cannabis induces loss of internal control and cognitive impairment, especially impairment of attention and memory, for the duration of the intoxication period.[58]
Stimulants, such as cocaine, amphetamines or caffeine are known to improve recall in humans.[59] However, the effect of prolonged use of stimulants on cognitive functioning is very different from the impact on one-time users. Some researchers have found stimulant use to lower recall rates in humans after prolonged usage. The axons, dendrites, and neurons wear out in many cases. Current research illustrates a paradoxical effect. The few exceptions undergo mental hypertrophy. Methylenedioxymethamphetamine (MDMA) users are found to exhibit difficulties encoding information into long-term memory, display impaired verbal learning, are more easily distracted, and are less efficient at focusing attention on complex tasks. The degree of executive impairment increases with the severity of use, and the impairments are relatively long-lasting. Chronic cocaine users display impaired attention, learning, memory, reaction time and cognitive flexibility.[58] Whether or not stimulants have a positive or negative effect on recall depends on how much is used and for how long.
Consistently, females perform better than males on episodic memory tasks including delayed recall and recognition. However, males and females do not differ on working, immediate and semantic memory tasks. In general, neuro-psychological observations suggest that anterior lesions cause greater deficits in females than in male. It has been proposed that the gender differences in memory performance reflect underlying differences in the strategies used to process information, rather than anatomical differences. However, gender differences in cerebral asymmetry received support from morphometric studies showing a greater leftward asymmetry in males than in females, meaning that men and women use each side of their brain to a different extent.[60] There is also evidence for a negative recall bias found in women, which means females in general are more likely than males to recall their mistakes.[61] In an eyewitness study done by Dan Yarmey (1991) from the University of Guelph, he found that women were significantly more accurate than men in accuracy of recall for weight of suspects.[62]
This section relies on references to primary sources. Please add references to secondary or tertiary sources. (April 2013)
There has been much research on whether eating prior to a cognitive recall test can effect cognitive functioning. One example was a study of the effect of breakfast timing on selected cognitive functions of elementary school students. Their results found that children who ate breakfast at school scored notably higher on most of the cognitive tests than did students who ate breakfast at home and also children who did not eat breakfast at all.[63]
A different study was of women who were experiencing Premenstrual Syndrome. The women were either given a placebo beverage or a carbohydrate-rich beverage. The patients were tested at home, and their moods, cognitive performance, and food craving were measured before the consumption of the beverage and 30, 90, and 180 minutes after consumption. The results showed that the carbohydrate-rich beverage significantly decreased self-reported depression, anger, confusion, and carbohydrate craving 90 to 180 minutes after consumption. But more related to recall, memory word recognition also improved significantly.[64]
The phenomenological account of recall is referred to as metacognition, or "knowing about knowing". This includes many states of conscious awareness known as feeling-of-knowing states, such as the tip-of-the-tongue state. It has been suggested that metacognition serves a self-regulatory purpose whereby the brain can observe errors in processing and actively devote resources to resolving the problem. It is considered an important aspect of cognition that can aid in the development of successful learning strategies that can also be generalized to other situations.[65]
Main page: Tip of the tongue
A tip of the tongue (TOT) state refers to the perception of a large gap between the identification or knowledge of a specific subject and being able to recall descriptors or names involving said subject. This phenomena is also referred to as 'presque vu', a French term meaning "almost seen". There are two prevalent perspectives of TOT states: the psycholinguistic perspective and the metacognitive perspective.
Psycholinguistics views TOT states as a failure of retrieval from lexical memory (see Cohort Model) being cued by semantic memory (facts). Since there is an observed increase in the frequency of TOT states with age, there are two mechanisms within psycholinguistics that could account for the TOT phenomenon. The first is the degradation of lexical networks with age, where degrading connections between the priming of knowledge and vocabulary increases difficulty of successfully retrieving a word from memory. The second suggests that the culmination of knowledge, experience, and vocabulary with age results in a similar situation where many connections between a diverse vocabulary and diverse knowledge also increases the difficulty of successful retrieval of a word from memory.[66]
The metacognitive perspective views TOT states simply as the awareness felt when such an event occurs and the perception of the experience involved. Mainly being aware of a TOT state can result in the rapid devotion of cognitive resources to resolving the state and successfully retrieving the word from memory. Such an explanation leaves much to be desired; however, the psycholinguistic perspective and the metacognitive perspective on TOT states are not mutually exclusive and both are used to observe TOT states in a laboratory setting.[66]
An incubation effect can be observed in TOT states, where the passage of time alone can influence the resolution of the state and result in successful recall. Also, the presence of a TOT state is a good predictor that the problem can be resolved correctly, although this has been shown to occur more frequently with older-young-adults than young-adults or seniors. This is evidence for both the metacognitive perspective as well as the psycholinguistic perspective. It demonstrates the devotion of resources to searching memory, a source of cumulative information, for the desired correct information, and it also shows that we are aware of what information we know or do not know.[67] This is why the current debate between the psycholinguistic view of TOTs as retrieval failure and the metacognitive view of TOTs as a tool for learning continues.
Similar phenomena include Déjà vu (Already seen), Jamais vu (Never Seen), and Déjà entendu (Already Heard). These occur rarely and are more prevalent in patients with traumatic head injuries, and brain disorders including epilepsy.
Often, even after years, mental states once present in consciousness return to it with apparent spontaneity and without any act of the will; that is, they are reproduced involuntarily. Here, also, in the majority of cases we at once recognise the returned mental state as one that has already been experienced; that is, we remember it. Under certain conditions, however, this accompanying consciousness is lacking, and we know only indirectly that the "now" must be identical with the "then"; yet we receive in this way a no less valid proof for its existence during the intervening time. As more exact observation teaches us, the occurrence of these involuntary reproductions is not an entirely random and accidental one. On the contrary they are brought about through the instrumentality of other immediately present mental images. Moreover they occur in certain regular ways which in general terms are described under the so-called 'laws of association'.[68]
—Ebbinghaus, H (1885), as translated by Ruger & Bussenius (1913)
Until recently, research on this phenomenon has been relatively rare, with only two types of involuntary memory retrieval identified: involuntary autobiographical memory retrieval, and involuntary semantic memory retrieval. Both of these phenomena can be considered emergent aspects of otherwise normal and quite efficient cognitive processes.
Involuntary autobiographical memory (IAM) retrieval occurs spontaneously as the result of sensory cues as well as internal cues, such as thought or intention. These cues influence us in our day-to-day lives by constantly and automatically activating unconscious memories through priming.[69] It has been demonstrated in many studies that our specific goals and intentions will most frequently result in the retrieval of related IAM, while the second most frequent IAM retrievals result from physical cues in the surrounding context. Autobiographical memories that are unrelated to any specific cues, whether internal or external, are the least frequent to occur. It has been suggested that in this case, an error in self-regulation of memory has occurred that results in an unrelated autobiographical memory reaching the conscious mind. These findings are consistent with metacognition as the third type of experience is often identified as the most salient one.[70]
Involuntary semantic memory retrieval (ISM), or "semantic-popping", occurs in the same fashion as IAM retrieval. However, the elicited memory is devoid of personal grounding and often considered trivial, such as a random word, image, or phrase. ISM retrieval can occur as a result of spreading activation, where words, thoughts, and concepts activate related semantic memories continually. When enough related memories are primed that an interrelated concept, word, thought, or image "pops" into consciousness and you are unaware of the extent of its relatedness within your memory. Spreading activation is thought to build over a period of many hours, days, or even weeks before a random semantic memory "pops".[71]
Main page: False memory syndrome
False memories result from persistent beliefs, suggestions via authority figures, or statements of false information. Repeated exposure to these stimuli influence the reorganization of a person's memory, affecting its details, or implanting vivid false accounts of an event.[72] This is usually accounted for by source-monitoring error, where a person can recall specific facts, but cannot correctly identify the source of that knowledge because of apparent loss of the association between the episodic (specific experience, or source) andsemantic (concept-based, or gist) accounts of the stored knowledge. An example of this is cryptomnesia, or inadvertent plagiarism, where one duplicates a work that they have previously encountered believing it to be their original idea.[73] False memories can also be accounted for by the generation effect, which is an observable phenomena where repeated exposure to a belief, suggestion, or false information is better remembered with each subsequent generation. This can be seen with the misinformation effect, where an eye-witness account of an event can be influenced by a bystander account of the same event, or by suggestion via an authority figure. It is also believed to influence the recovery of repressed shocking or abusive memories in patients under hypnosis, where the recovered memory, although possibly a vivid account, could be entirely false, or have specific details influenced as the result of persistent suggestion by the therapist.[72]
Retrograde amnesia is typically the result of physical or psychological trauma which manifests itself as the inability to remember information preceding the traumatic event. It is usually accompanied by some type of anterograde amnesia, or inability to acquire new knowledge. Focal retrograde amnesia (FRA), sometimes known as functional amnesia, refers to the presence of retrograde amnesia while knowledge acquisition remains intact (no anterograde amnesia). Memory for how to use objects and perform skills (implicit memory) may remain intact while specific knowledge of personal events or previously learned facts (explicit memory) become inaccessible or lost.[74][75] Amnesia can result from a number of different causes, including encephalitis, severe traumatic brain injury, vitamin B1 deficiency as seen in Korsakoff's Syndrome, and psychotic episodes, or by witnessing an emotionally traumatic event (Dissociative amnesia). Dysfunction of the temporal and frontal lobes have been observed in many cases of focal retrograde amnesia, whether metabolic or the result of lesions. However, this evidence only appears to correlate with the symptoms of retrograde amnesia as cases have been observed where patients suffering from minor concussions, showing no visible brain damage, develop FRA. It has been suggested that FRA could represent a variety of different disorders, cognitive deficits, or conditions that result in disproportionate loss of explicit memory, hence Disproportionate Retrograde Amnesia.[75]
Memory phenomena are rich sources of storylines and novel situations in popular media. Two phenomena that appear regularly are total recall abilities and amnesia.
The Argentinean author, Jorge Luis Borges wrote the short story Funes the Memorious in 1944. It depicts the life of Ireneo Funes, a fictional character who falls off his horse and experiences a head injury. After this accident, Funes has total recall abilities. He is said to recall an entire day with no mistakes, but this feat of recall takes him an entire day to accomplish. It is said that Borges was ahead of his time in his description of memory processes in this story, as it was not until the 1950s and research on the patient HM that some of what the author describes began to be understood.[76] A more recent instance of total recall in literature is found in Dan Brown’s booksThe Da Vinci Code and Angels & Demons, in which the main character, Dr. Robert Langdon, a religious iconography and symbology professor at Harvard University, has almost total recall ability. In The Curious Incident of the Dog in the Nighttime by Mark Haddon, the main character, Christopher Boone, is a 15-year old autistic boy with total recall abilities.[77]
Total recall is popular in television. It can be seen in Season 4 of the television show "Criminal Minds", in which the character Dr. Spencer Reid claims to have total recall ability.[78] Agent Fox Mulder from the television show "The X-Files" has a photographic memory, a popular term for total recall.[79] Also, the character of hospital resident Lexie Grey on the television show "Grey’s Anatomy" has total recall ability.[80]
Amnesia the damage or disruption of memory processes is a very popular subject in movies since 1915. Although its portrayal is usually inaccurate, there are some exceptions. Memento (2000) is said to be inspired by the condition of the famous amnesic patient known as HM. The main character Leonard suffers from anterograde amnesia after a traumatic attack in which his wife dies. He maintains his identity and shows very little retrograde amnesia. He also displays some of the daily memory problems that are experiences by most amnesics, such as forgetting names or where he is going. Another fairly accurate portrayal of memory disturbances is the non-human character Dory in Finding Nemo (2003). This fish, like Leonard, shows memory problems faced by most amnesics where she forgets names, has difficulty storing and recalling information, and often forgets what she is doing, or why she is doing something.
Movies tend to show amnesia as a result of head injury from accidents or attacks. The loss of identity and autobiographical memory shown in Santa Who? (2000) in which Santa suffers from amnesia that destroys his identity and memory of himself is very unlikely in the real world. This is also portrayed in The Bourne Identity (2002) and The Bourne Supremacy (2004) where the main character forgets he is a trained assassin. Another misrepresentation of the reality of memory loss in the movies can be seen in Clean Slate (1994) and 50 First Dates (2004) where the characters are able to encode memory during the day but lose all memory of that day at night, while sleeping.
Movies often restore victim’s memory through a second trauma, or through a kind of cued recall when they revisit familiar places or see familiar objects. The phenomenon of the second trauma can be seen in Singing in the Dark (1956) where the victim experiences the onset of amnesia because of the trauma of the Holocaust, but memory is restored with a blow to the head. Although neurosurgery is often the cause of amnesia, it is seen as a solution in some movies, including Deluxe Annie (1918) and Rascals (1938).
Memory erasure is portrayed in Eternal Sunshine of the Spotless Mind (2004) and in the Men in Black movies. Men in Black features a device to erase the potentially harmful memories of extraterrestrial interactions in members of the general public. Eternal Sunshine of the Spotless Mind describes a process that targets and erases memories of interpersonal relationships the patients would rather forget so that they are no longer able to recall the experience. In Paycheck (2003) and Total Recall (1990) memory suppression is used to control and the characters are able to overcome the attempts and recall pieces of their memory.[81]
By repeating an item over and over again, memory can improve. This process is also known as rehearsal.[82]
Retrieval-induced forgetting is a process by which retrieving an item from long-term memory impairs subsequent recall of related items.[82]
From Wikipedia, the free encyclopedia
Memory consolidation is a category of processes that stabilize a memory trace after the initial acquisition.[1] Consolidation is distinguished into two specific processes, synaptic consolidation, which occurs within the first few hours after learning, and systems consolidation, where hippocampus-dependent memories become independent of the hippocampusover a period of weeks to years. Recently, a third process has become the focus of research, reconsolidation, in which previously consolidated memories can be made labile again through reactivation of the memory trace.
Memory consolidation was first referred to in the writings of the renowned Roman teacher of rhetoric Quintillian. He noted the “curious fact… that the interval of a single night will greatly increase the strength of the memory,” and presented the possibility that “… the power of recollection .. undergoes a process of ripening and maturing during the time which intervenes.” The process of consolidation was later proposed based on clinical data illustrated in 1882 by Ribot’s Law of Regression, “progressive destruction advances progressively from the unstable to the stable”. This idea was elaborated on by William H. Burnham a few years later in a paper on amnesia integrating findings from experimental psychology and neurology. Coining of the term “consolidation” is credited to the German researchers Müller and Alfons Pilzecker who rediscovered the concept that memory takes time to fixate or undergo “Konsolidierung” in their studies conducted between 1892 and 1900.[1] The two proposed the perseveration-consolidation hypothesis after they found that new information learned could disrupt information previously learnt if not enough time had passed to allow the old information to be consolidated.[2] This led to the suggestion that new memories are fragile in nature but as time passes they become solidified.[2]
Systematic studies of retrograde amnesia started to emerge in the 1960s and 1970s. The case of Henry Molaison, formerly known as patient H.M., became a landmark in studies of memory as it relates to amnesia and the removal of the hippocampal zone and sparked massive interest in the study of brain lesions and their effect on memory. After Molaison underwent a bilateral medial temporal loberesection to alleviate epileptic symptoms the patient began to suffer from memory impairments. Molaison lost the ability to encode and consolidate newly learned information leading researchers to conclude the medial temporal lobe (MTL) was an important structureinvolved in this process.[3] Molaison also showed signs of retrograde amnesia spanning a period of about 3 years prior to the surgerysuggesting that recently acquired memories of as long as a couple years could remain in the MTL prior to consolidation into other brain areas.[4] Research into other patients with resections of the MTL have shown a positive relationship between the degree of memory impairment and the extent of MTL removal which points to a temporal gradient in the consolidating nature of the MTL.[3]
These studies were accompanied by the creation of animal models of human amnesia in an effort to identify brain substrates critical for slow consolidation. Meanwhile, neuropharmacological studies of selected brain areas began to shed light on the molecules possibly responsible for fast consolidation.[1] In recent decades, advancements in cellular preparations, molecular biology, and neurogenetics have revolutionized the study of consolidation. Providing additional support is the study of functional brain activity in humans which has revealed that the activity of brain regions changes over time after a new memory is acquired.[3] This change can occur as quickly as a couple hours after the memory has been encoded suggesting that there is a temporal dimension to the reorganization of the memory as it is represented in the brain.[2]
Synaptic consolidation is one form of memory consolidation seen across all species and long-term memory tasks. Long-term memory, when discussed in the arena of synaptic consolidation, is memory that lasts for at least 24 hours. An exception to this 24-hour rule islong-term potentiation, or LTP, a model of synaptic plasticity related to learning, in which an hour is thought to be sufficient. Synaptic consolidation is achieved faster than systems consolidation, within only minutes to hours of learning.[1] LTP, one of the best understood forms of synaptic plasticity, is thought to be a possible underlying process in synaptic consolidation.
The standard model of synaptic consolidation suggests that alterations of synaptic protein synthesis and changes in membrane potential are achieved through activatingintracellular transduction cascades. These molecular cascades trigger transcription factors that lead to changes in gene expression. The result of the gene expression is the lasting alteration of synaptic proteins, as well as synaptic remodeling and growth. In a short time-frame immediately following learning, the molecular cascade, expression and process of both transcription factors and immediate early genes, are susceptible to disruptions. Disruptions caused by specific drugs, antibodies and gross physical trauma can block the effects of synaptic consolidation.[1]
LTP can be thought of as the prolonged strengthening of synaptic transmission,[5] and is known to produce increases in the neurotransmitter production and receptor sensitivity, lasting minutes to even days. The process of LTP is regarded as a contributing factor to synaptic plasticity and in the growth of synaptic strength, which are suggested to underlie memory formation. LTP is also considered to be an important mechanism in terms of maintaining memories within brain regions,[6] and therefore is thought to be involved in learning.[5] There is compelling evidence that LTP is critical for Pavlovian fear conditioning in rats suggesting that it mediates learning and memory in mammals. Specifically, NMDA-receptor antagonists appear to block the induction of both LTP and fear conditioning and that fear conditioning increases amygdaloidal synaptic transmission that would result in LTP.[7]
Synaptic consolidation, when compared to systems consolidation (which is said to take weeks to months to years to be accomplished), is considerably faster. There is evidence to suggest that synaptic consolidation takes place within minutes to hours of memory encoding or learning, and as such is considered the ‘fast’ type of consolidation.[1] As soon as six hours after training, memories become impervious to interferences that disrupt synaptic consolidation and the formation of long-term memory.
Distributed learning has been found to enhance memory consolidation, specifically for relational memory. Experimental results suggest that distributing learning over the course of 24 hours decreases the rate of forgetting compared to massed learning, and enhances relational memory consolidation. When interpreted in the context of synaptic consolidation, mechanisms of synaptic strengthening may depend on the spacing of memory reactivation to allow sufficient time for protein synthesis to occur, and thereby strengthen long-term memory.[8]
Protein synthesis plays an important role in the formation of new memories. Studies have shown that protein synthesis inhibitors administered after learning, weaken memory, suggesting that protein synthesis is required for memory consolidation. Additionally, reports have suggested that the effects of protein synthesis inhibitors also inhibit LTP.[9]However, it should be noted that other results have shown that protein synthesis may not in fact be necessary for memory consolidation, as it has been found that the formation of memories can withstand vast amounts of protein synthesis inhibition, suggesting that this criterion of protein synthesis as necessary for memory consolidation is not unconditional.[9]
There is evidence to suggest that dietary flavonoids have effects on encouraging LTP and synaptic plasticity, therefore affecting memory. Specifically, it was found that dietary-derived flavonoids might protect neurons, enhance neuronal function, and stimulate neuronal regeneration. Additionally, these dietary phytochemicals interact with several neuronalsignaling cascade pathways that are responsible for alterations in LTP, and consequently, learning and human memory.[6] Flavonoids may trigger certain events, including the activation of the CREB transcription factor, which is important to the enhancement of short-term and long-term memory. This activation then triggers the synthesis of important proteins related to LTP, ultimately leading to synapse growth and eventually long-term memory.[6]
Systems Consolidation is the second form of memory consolidation. It is a reorganization process in which memories from the hippocampal region, where memories are firstencoded, are moved to the neo-cortex in a more permanent form of storage.[10] Systems consolidation is a slow dynamic process that can take from one to two decades to be fully formed in humans, unlike synaptic consolidation that only takes minutes to hours for new information to stabilize into memories.[10]
The Standard model of systems consolidation has been summarized by Squire and Alvarez (1995);[11] it states that when novel information is originally encoded and registered, memory of these new stimuli becomes retained in both the hippocampus and cortical regions.[12] Later the hippocampus’ representations of this information become active inexplicit (conscious) recall or implicit (unconscious) recall like in sleep and ‘offline’ processes.[1]
Memory is retained in the hippocampus for up to one week after initial learning, representing the hippocampus-dependent stage.[12] During this stage the hippocampus is ‘teaching’ the cortex more and more about the information and when the information is recalled it strengthens the cortico-cortical connection thus making the memory hippocampus-independent.[1] Therefore from one week and beyond the initial training experience, the memory is slowly transferred to the neo-cortex where it becomes permanently stored.[1] In this view the hippocampus can perform the task of storing memories temporarily because the synapses are able to change quickly whereas the neocortical synapses change over time.[11] Consolidation is thus the process whereby the hippocampus activates the neocortex continually leading to strong connections between the two. Since the hippocampus can only support memories temporarily the remaining activation will be seen only in the neocortex which is able to support memory indefinitely. Squire and Alvarez took the temporally graded nature of patients with retrograde amnesia as support for the notion that once a connection has been established within the neocortex the hippocampus is no longer required, but this process is dynamic and extends for several years.
Squire and Alvarez also proposed the idea that MTL structures play a role in the consolidation of memories within the neocortex by providing a binding area for multiple corticalregions involved in the initial encoding of the memory.[11] In this sense the MTL would act as a relay station for the various perceptual input that make up a memory and stores it as a whole event. After this has occurred the MTL directs information towards the neocortex to provide a permanent representation of the memory.
Multiple Trace Theory (MTT) builds on the distinction between semantic memory and episodic memory and addresses perceived shortcomings of the standard model with respect to the dependency of the hippocampus. Multiple Trace Theory argues that the hippocampus is always involved in the retrieval and storage of episodic memories.[13] It is thought that semantic memories, including basic information encoded during the storage of episodic memories, can be established in structures apart from the hippocampal system such as the neo-cortex in the process of consolidation.[13] Hence, while proper hippocampal functioning is necessary for the retention and retrieval of episodic memories, it is less necessary during the encoding and use of semantic memories. As memories age there are long-term interactions between the hippocampus and neo-cortex and this leads to the establishment of aspects of memory within structures aside from the hippocampus.[13] MTT thus states that both episodic and semantic memories rely on the hippocampus and the latter becomes somewhat independent of the hippocampus during consolidation.[13] An important distinction between MTT and the standard model is that the standard model proposes that all memories become independent of the hippocampus after several years. However, Nadel and Moscovitch have shown that the hippocampus was involved in memory recall for all remote autobiographical memories no matter of their age.[13] An important point they make while interpreting the results is that activation in the hippocampus was equally as strong regardless of the fact that the memories recalled were as old as 45 years prior to the date of the experiment.[13] This is complicated by the fact that the hippocampus is constantly involved in the encoding of new events and activation due to this fact is hard to separate using baseline measures.[13] Because of this, activation of the hippocampus during retrieval of distant memories may simply be a by-product of the subject encoding the study as an event.[13]
Haist, Gore, and Mao, sought to examine the temporal nature of consolidation within the hippocampus to test the multiple trace theory against the standard view.[14] They found that the hippocampus does not substantially contribute to the recollection of remote memories after a period of a few years. They claim that advances in the functional magnetic resonance imaging have allowed them to improve their distinction between the hippocampus and the entorhinal cortex which they claim is more enduring in its activation from remote memory retrieval.[14] They also criticize the use of memories during testing which cannot be confirmed as accurate.[14] Finally, they state that the initial interview in the scanner acted as an encoding event as such differences between recent and remote memories would be obscured.[14]
Nadel and Moscovitch argued that when studying the structures and systems involved in memory consolidation, semantic memory and episodic memory need to be distinguished as relying on two different memory systems. When episodic information is encoded there are semantic aspects of the memory that are encoded as well and this is proposed as an explanation of the varying gradients of memory loss seen in amnesic patients.[13] Amnesic patients with hippocampal damage show traces of memories and this has been used as support for the standard model because it suggests that memories are retained apart from the hippocampal system.[13] Nadel and Mocovitch argue that these retained memories have lost the richness of experience and exist as depersonalized events that have been semanticized over time.[13] They suggest that this instead provides support for their notion that episodic memories rely significantly on the hippocampal system but semantic memories can be established elsewhere in the brain and survive hippocampal damage.[13]
Learning can be distinguished by two forms of knowledge: declarative and procedural. Declarative information includes the conscious recall of facts, episodes, and lists, and its storage typically connected with the MTL and the hippocampal systems as it includes the encoding of both semantic and episodic information of events. Procedural knowledge however has been said to function separate from this system as it relies primarily on motor areas of the brain.[15] The implicit nature of procedural knowledge allows it to exist absent from the conscious awareness that the information is there. Amnesic patients have shown retained ability to be trained on tasks and exhibit learning without the subject being aware that the training had ever taken place.[15] This introduces a dissociation between the two forms of memory and the fact that one form can exist absent the other suggests separate mechanisms are involved in consolidation. Squire has proposed the procedural knowledge is consolidated in some cases by the extrapyramidal motor system.[15] Squire demonstrated that intact learning of certain motor, perceptual, and cognitive skills can be retained in patients with amnesia.[15] They also retain the ability to be influenced by priming effects without the patients being able to consciously recall any training session occurring.[15]
The amygdala, specifically the basolateral region (BLA) is involved in the encoding of significant experiences and has been directly linked to memorable events.[2] Extensive evidence suggests that stress hormones such as epinephrine play a critical role in consolidating new memories and this is why stressful memories are recalled vividly.[16] Studies by Gold and van Buskirk provided initial evidence for this relationship when they showed that injections of epinephrine into subjects following a training period resulted in greater long-term retention of task related memories.[9][17] This study also provided evidence that the level of epinephrine injected was related to the level of retention suggesting that the level of stress or emotionality of the memory plays a role on the level of retention. It is suggested that epinephrine affects memory consolidation by activating the amygdala and studies have shown that antagonism of beta-andrenoreceptors prior to injection of epinephrine will block the retention of memory effects seen previously.[18][19] This is supported by the fact that beta-adrenoreceptor agonists have the opposite effect on the enhancement of memory consolidation.[18][19] The BLA is thought to be actively involved in memory consolidation and is influenced strongly by stress hormones resulting in increased activation and as such increased memory retention.[16] The BLA then projects to the hippocampus resulting in a strengthened memory.[2] This relationship was studied by Packard and Chen who found that when glutamate was administered to the hippocampus, enhanced consolidation was seen during food-rewarded maze tasks.[20] The opposite effect was also seen when the amygdala was inactivated using lidocane.[20] Studies appear to suggest that the amygdala effects the consolidation of memories through its influence with stress hormones and the projections to other brain areas implicated in memory consolidation.[2]
See also: Sleep and Memory
Rapid eye movement (REM) sleep has been thought of to be an important concept in the overnight learning in humans by establishing information in the hippocampal and corticalregions of the brain.[21] REM sleep elicits an increase in neuronal activity following an enriched or novel waking experience, thus increasing neuronal plasticity and therefore playing an essential role in the consolidation of memories.[22] This has come into question in recent years however and studies on sleep deprivation have shown that animals and humans who are denied REM sleep do not show deficits in task learning. It has been proposed that since the brain is in a non-memory encoding state during sleep consolidation would be unlikely to occur.[23]
Recent studies have examined the relationship between REM sleep and procedural learning consolidation. In particular studies have been done on sensory and motor related tasks. In one study testing finger-tapping, people were split into two groups and tested post-training with or without intervening sleep; results concluded that sleep post-training increases both speed and accuracy in this particular task, while increasing the activation of both cortical and hippocampal regions; whereas the post-training awake group had no such improvements.[21] It has been theorized that this may be related more-so to a process of synaptic consolidation rather than systems consolidation because of the short-term nature of the process involved.[23] Researchers examining the effect of sleep on motor learning have noted that while consolidation occurs over a period of 4–6 hours during sleep, this is also true during waking hours, which may negate any role of sleep in learning.[23] In this sense sleep would serve no special purpose to enhance consolidation of memories because it occurs independently of sleep. Other studies have examined the process of replay which has been described as a reactivation of patterns that were stimulated during a learning phase. Replay has been demonstrated in the hippocampus and this has lent support to the notion that it serves a consolidation purpose.[23] However, replay is not specific to sleep and both rats and primates show signs during restful-awake periods.[23] Also, replay may simply be residual activation in areas that were involved previously in the learning phase and may have no actual effect on consolidation.[23] This reactivation of the memory traces has also been seen in non-REM sleep specifically for hippocampus-dependant memories.[24] Researchers have noted strong reactivation of the hippocampus during sleep immediately after a learning task. This reactivation led to enhanced performance on the learned task.[24] Researchers following this line of work have come to assume that dreams are a by-product of the reactivation of the brain areas and this can explain why dreams may be unrelated to the information being consolidated.[24] The dream experience itself is not what enhances memory performance but rather it is the reactivation of the neural circuits that causes this.
Zif268 & REM Sleep[edit]
Zif268 is an Immediate Early Gene (IEG) thought to be involved in neuroplasticity by an up-regulation of the transcription factor during REM sleep after pre-exposure to an enriched environment.[22] Results from studies testing the effects of zif268 on mice brains postmortem, suggest that a waking experience prior to sleep can have an enduring effect in the brain, due to an increase of neuroplasticity.[22]
Memory reconsolidation is the process of previously consolidated memories being recalled and actively consolidated.[5] It is a distinct process that serves to maintain, strengthen and modify memories that are already stored in the long-term memory. Once memories undergo the process of consolidation and become part of long-term memory, they are thought of as stable. However, the retrieval of a memory trace can cause another labile phase that then requires an active process to make the memory stable after retrieval is complete.[5] It is believed that post-retrieval stabilization is different and distinct from consolidation, despite its overlap in function (e.g. storage) and its mechanisms (e.g. protein synthesis). Memory modification needs to be demonstrated in the retrieval in order for this independent process to be valid.[5]
The theory of reconsolidation has been debated for many years and has become quite controversial. Reconsolidation was first conceptualized after studies were done on elimination of phobias with electroconvulsive shock therapy; the disruption of the consolidated fear memory after shock administration led to further investigation into the concept.[5] In many early studies electroconvulsive shock therapy was used to test for reconsolidation, as it was a known amnesic agent, and lead to memory loss if administered directly after the retrieval of a memory.[1] Later research using Pavlovian fear conditioning on rats found that a consolidated fear memory can return to a labile state, with immediate amygdalainfusions of the protein synthesis inhibitor anisomycin, but not infusions made six hours afterwards.[25] It was concluded that consolidated fear memory, when reactivated, enters a changeable state that requires de novo protein synthesis for new consolidation or reconsolidation of the old memory.[25] In addition to fear memories, appetitive memories are also prone to reconsolidation episodes, which can be disrupted likewise after local administration of a protein activity inhibitor.[26] Since these break through studies many more have been done testing the theory of reconsolidation. Studies have been done on numerous subjects including; crabs, chicks, honeybees, medaka fish, lymnaea, humans and rodents.[5]
Some studies have supported this theory, while others have failed to demonstrate disruption of consolidated memory after retrieval. It is important to note that negative results may be examples of conditions where memories are not susceptible to a permanent disruption, thus a determining factor of reconsolidation.[5] After much debate and a detailed review of this field it had been concluded that reconsolidation was a real phenomenon.[27] More recently Tronson and Taylor compiled a lengthy summary of multiple reconsolidation studies, noting a number of studies were unable to show memory impairments due to blocked reconsolidation. However the need for standardized methods was underscored as in some learning tasks such as fear conditioning, certain forms of memory reactivation could actually represent new extinction learning rather than activation of an old memory trace. Under this possibility, traditional disruptions of reconsolidation might actually maintain the original memory trace but preventing the consolidation of extinction learning.[5]
Reconsolidation experiments are more difficult to run than typical consolidation experiments as disruption of a previously consolidated memory must be shown to be specific to the reactivation of the original memory trace. Furthermore, it is important to demonstrate that the vulnerability of reactivation occurs in a limited time frame, which can be assessed by delaying infusion till six hours after reactivation. It is also useful to show that the behavioral measure used to assess disruption of memory is not just due to task impairment caused by the procedure, which can be demonstrated by testing control groups in absence of the original learning. Finally, it is important to rule out alternative explanations, such asextinction learning by lengthening the reactivation phase.[5]
Questions arose if reconsolidation was a unique process or merely another phase of consolidation. Both consolidation and reconsolidation can be disrupted by pharmacological agents (e.g. the protein synthesis inhibitor anisomycin) and both require the transcription factor CREB. However, recent amygdala research suggests that BDNF is required for consolidation (but not reconsolidation) whereas the transcription factor and immediate early gene Zif268 is required for reconsolidation but not consolidation.[28] A similar double dissociation between Zif268 for reconsolidation and BDNF for consolidation was found in the hippocampus for fear conditioning.[29] However not all memory tasks show this double dissociation, such as object recognition memory.[30]
Lateral view of the hippocampus which is located in the medial temporal lobe