Publication

(Total Citations > 3700; h-index 35)

(google scholor)

58. S.Y. Willow, L. Kang, D.D.L. Minh, "Learned Mappings for Targeted Free Energy Perturbation between Peptide Conformations," J. Chem. Phys.  159, 124104 (2023). 

57. J. Mato, S.Y. Willow, J. C. Werhahn, S.S. Xantheas, "The back door to the surface hydrated electron," J. Chem. Phys. Lett. 14, 8221-8226 (2023).

56. K. Tuz, M. Yuan, Y. Hu, T. T. Do, S. Y. Willow, J. A. DePaolo-Boisvert, J. R. Fuller, D.D.L. Minh, O. Juarez,  "Identification of the Riboflavin-Cofactor Binding Site in the Vibrio Cholerae Ion-Pumping NQR Complex: A Novel Structural Motif in Redox Enzymes", J. Biol. Chem. 298, 102182 (2022).

55. S. Y. Willow, M. Yuan, O. Juarez,  D.D.L. Minh, "Electrostatics and water occlusion regulate covalently-bound FMN cofactors of Vibrio cholerae respiratory complex NQR", Proteins 89, 1376-1385 (2021).

54. S. Y. Willow, B Xie, J Lawrence, RS Eisenberg, DDL Minh, "On the polarization of ligands by proteins", Phys. Chem. Chem. Phys. 22, 12044-12057 (2020).

53. S. Y. Willow*, S. S. Xantheas, "A Molecular Level Insight of the Effect of Hofmeister Anions on the Interfacial Surface Tension of a Model Protein" J. Phys. Chem. Lett. 8, 1574-1577 (2017).

52. S. Y. Willow*, "Path Integral Molecular Dynamics at Zero Thermal Temperature," Chem. Phys. Lett. 674, 33 (2017).

51. M. A. Salim, S. Y. Willow, S. Hirata, "Ice Ih anomalies: Thermal Contraction, Anomalous Volume Isotope Effect, and Pressure-Induced Amorphization," J. Chem. Phys. 144, 204503 (2016).

50. S. Y. Willow*, X.C. Zeng, S.S. Xantheas, K.S. Kim, S. Hirata, "Why is MP2-Water "Cooler" and "Denser" than DFT-Water?" J. Phys. Chem. Lett. 7, 680 (2016).

49. S. Y. Willow, M. Salim, K. S. Kim, S. Hirata, "Ab initio molecular dynamics of liquid water using embedded-fragment second-order many-body perturbation theory towards its accurate property prediction ," Sci. Rep. 5, 14358 (2015). 

48. K. R. Brorsen, S. Y. Willow, S. S. Xantheas, M. S. Gordon, "The melting temperature of liquid water with the effective fragment potential," J. Phys. Chem. Lett. 6, 3555 (2015).

47. P. Apte, N. Pingua, A. K. Gautam, U. Kumar, S. Y. Willow, X. Zeng, B. D. Kulkarni, "The freezing tendency towards 4-coordinated amorphous network causes increase in heat capacity of supercooled Stillinger-Weber silicon."  RSC Advances, 5, 44679 (2015).

46. S. Y. Willow, K. S. Kim, S. Hirata, "Brueckner-Goldstone Quantum Monte Carlo for Correlation Energies and Quasiparticle Energy Bands of One-Dimensional Solids," Phys. Rev. B (Rapid Comm.) 90, 201110(R) (2014).

45. S. Y. Willow, J. Zhang, E.F. Valeev, S. Hirata,  "Stochastic Evaluation of Explicitly Correlated Second-Order Many-Body Perturbation Energy,"   J. Chem. Phys. (Communications) 140, 031101 (2014).

44. S. Hirata, X. He, M. R. Hermes, S. Y. Willow, "Second-Order Many-Body Perturbation Theory: An Eternal Frontier,"  J. Phys. Chem. A 118, 655 (2014).

43. S. Y. Willow, S. Hirata,"Stochastic, real-space, imaginary-time evaluation of third-order Feynman-Goldstone diagrams,"  J. Chem. Phys. 140, 024111 (2014).

42. S. Y. Willow, M. R. Hermes, K. S. Kim, S. Hirata, "Convergence acceleration of massively parallel Monte Carlo second-order many-body perturbation calculations using redundant walkers," J. Chem. Theory Comput. 9, 4396 (2013).

41. N. De Silva, S. Y. Willow, M. S. Gordon, "Solvent Induced Shifts in the UV Spectrum of Amides," J. Phys. Chem. A 117 11847 (2013).

40. T. Koishi, K. Yasuoka, S.Y. Willow, S. Fujikawa, X.C. Zeng, "Molecular insight into different denaturing efficiency of urea, guanidinium and methanol: A comparative simulation study,"  J. Chem. Theory Comput. 9, 2540 (2013).

39. S. Y. Willow, K. S. Kim, S. Hirata, "Stochastic evaluation of second-order Dyson self-energy," J. Chem. Phys. 138, 164111 (2013). 

38. S. Y. Willow, K. S. Kim, S. Hirata, "Stochastic evaluation of second-order many-body perturbation energies," J. Chem. Phys. 137, 204122 (2012).  

37. S. Y. Willow, S.S. Xantheas, "Enhancement of Hydrogen Storage Capacity in Hydrate Lattices", Chem. Phys. Lett. 525, 13 (2012). (Editor's Choice)

36. S. Y. Willow, N. J. Singh, and K. S. Kim, "NH4+ resides inside the water 20-mer cage as opposed to H3O+, which resides on the surface: A first principles molecular dynamics simulation study," J. Chem. Theory. Comput. 7, 3461 (2011). 

35. S. Sarom, S. Y. Willow, Y. Z. Federico, M. S. Gordon, "Solvent-induced Shift of the lowest single π->π* charge-transfer excited state of p-nitroaniline in water: an application of the TDDFT/EFP1 method," J. Phys. Chem. A 115, 9801 (2011)

34. S. Yoo and S.S. Xantheas, "The role of hydrophobic surfaces in altering water-mediated peptide-peptide interactions in an aqueous environment," J. Phys. Chem. A 115, 6088 (2011).

33. S. Yoo and S.S. Xantheas, "The effect of dispersion corrections on the melting temperature of liquid water," J. Chem. Phys. 134, 121105 (2011). 

32. S. Yoo, E. Apra, X.C. Zeng, S.S. Xantheas, "High-Level ab-initio electronic structure calculations of Water Clusters (H2O)16 and (H2O)17: a new global minimum for (H2O)16," J. Phys. Chem. Lett. 1, 3122 (2010).

31. F. Paesani, S. Yoo, H.J. Bakker, S.S. Xantheas, "Nuclear Quantum Effects in the Reorientation of Water," J. Phys. Chem. Lett. 1, 2316 (2010).

30. S. Yoo, S.S. Xantheas, X.C. Zeng, "The melting Temperature of bulk silicon from ab initio molecular dynamics simulations." Chem. Phys. Lett. 481, 88 (2009).

29. X. Sun, S. Yoo, S.S. Xantheas, and L.X. Dang, "The reorientation mechanism of hydroxide ions in water: A molecular dynamics study," Chem. Phys. Lett. 481, 9 (2009). 

28. S. Yoo, X.C. Zeng, and S.S. Xantheas, "On the phase diagram of water with density functional theory potentials: the melting temperature of Ice Ih with the Perdew-Burke-Ernzerhof and Becke-Lee-Yang-Parr functionals," J. Chem. Phys. 130, 221102 (2009).

27. S. Yoo, M.V. Kirov, S.S. Xantheas, "Low-Energy Networks of the T-Cage (H2O)24 Cluster and Their Use in constructing Periodic Unit Cells of the Structure I (sI) Hydrate Lattice," J. Am. Chem. Soc. 131, 7564 (2009).

26. S. Yoo, N. Shao, and X.C. Zeng, "Reexamine structures and relative stability of medium-sized silicon clusters: Low-lying endohedral fullerene-like clusters Si30-Si38," Phys. Lett. A, 373, 3757 (2009). 

25. S. Yoo, F. Zahariev, S. Sarom, and M.S. Gordon, "Solvent effects on optical properties of molecules: A combined time-dependent density functional theory/effective fragment potential approach," J. Chem. Phys. 129, 144112 (2008). 

24. S. Yoo, N. Shao, and X.C. Zeng, "Structures and relative stability of medium- and large-sized silicon clusters VI. Fullerene cage motifs for low-lying clusters Si39, Si40, Si50, Si60, Si70, and Si80," J. Chem. Phys. 128, 104316 (2008). 

23. S. Yoo, N. Shao, C. Koehler, T. Frauenheim, and X.C. Zeng, "Structures and relative stability of medium-sized silicon clusters. V. Low-lying endohedral fullerenelike clusters Si31~Si40 and Si45," J. Chem. Phys. 124, 164311 (2006). 

22. S. Yoo and X.C. Zeng, "Structures and relative stability of medium-sized silicon clusters. IV. Motif-based low-lying clusters Si21~Si30," J. Chem. Phys. 124, 054304 (2006). 

21. J. Bai, L.-F. Cui, J.L. Wang, S. Yoo, X. Li, J. Jellinek, C. Koehler, T. Frauenheim, L.-S. Wang, and X.C. Zeng, "Structure Evolution of Anionic Silicon Clusters SiN (20 <= N <= 45)," J. Phys. Chem. A 110, 908 (2006). 

20. S. Bulusu, S. Yoo, E. Apra, S.S. Xantheas, and X.C. Zeng, "The Lowest-Energy Structures of Water Clusters (H2O)11 and (H2O)13," J. Phys. Chem. A 110, 11781 (2006). 

19. N. Shao, Y. Gao, S. Yoo, W. An, and X.C. Zeng, "Search for Lowest-Energy Fullerenes: C98 to C100," J. Phys. Chem. A 110, 9523 (2006). (Correction) 

18. N. Shao, Y. Gao, S. Yoo, W. An, and X.C. Zeng, "Search for Lowest-Energy Fullerenes: C98 to C100," J. Phys. Chem. A 110, 7672 (2006). 

17. S. Yoo and X.C. Zeng, "Search for global-minimum geometries of medium-sized germanium clusters II. Motif-based low-lying clusters Ge21~Ge29," J. Chem. Phys. 124, 184309 (2006). 

16. S. Yoo and X.C. Zeng, "Structures and Stability of medium-sized silicon clusters III. Reexamination of motif transition in growth pattern from Si15 to Si20," J. Chem. Phys.123, 164303 (2005).

15. J. Zhao, J. Wang, S. Yoo, and X.C. Zeng, "Stuffed fullerene structures for medium-sized silicon clusters," Eur. J. Phys. D 34, 35 (2005). 

14. S. Yoo and X.C. Zeng, "Motif Transition in Growth Pattern of Small-to-Medium Sized Silicon Clusters," Angew. Chem. Int. Ed. 44, 1491 (2005). 

13. S. Bulusu, S. Yoo, and X.C. Zeng, "Search for global minimum geometries for medium sized germanium clusters: Ge12 ~ Ge20," J. Chem. Phys. 122, 164305 (2005). 

12. B. Kiran, S. Bulusu, H.-J. Zhai, S. Yoo, and X.C. Zeng, and L.-S. Wang, "Planar-to-tubular structural transition in boron clusters: B20 as the embryo of single-walled boron nanotubes", Proc. Natl. Acad. Sci. USA. 102, 961 (2005)

11. T. Koishi, K. Yasuoka, T. Ebisuzaki, S. Yoo, and X.C. Zeng, "Large-scale Molecular Dynamics Simulation of Nanoscale Hydrophobic Interaction and Nanobubble Formation," J. Chem. Phys. 123, 204707 (2005). 

10. Y.A. Lei, T. Bykov, S. Yoo, and X.C. Zeng, "The Tolman Length: Is it Positive or Negative," J. Am. Chem. Soc. 127, 15346 (2005). 

9. J. Wang, S. Yoo, J. Bai, J.R. Morris, and X.C. Zeng, "Melting temperature of ice Ih calculated from coexisting solid-liquid phases," J. Chem. Phys. 123, 036101-1 (2005). 

8. S. Yoo, J. Zhao, J. Wang, and X.C. Zeng, "Endohedral Silicon Fullerenes SiN (27 <= N <= 39)," J. Am. Chem. Soc., 126, 13845 (2004). 

7. S. Yoo, X.C. Zeng, and J.R. Morris, "The melting lines of model silicon calculated from coexisting solid-liquid phases," J. Chem. Phys. 120, 1654 (2004). 

6. T. Koishi, S. Yoo, K. Yauoka, X.C. Zeng et al. "Nanoscale hydrophobic interaction and nanobubble nucleation," Phys. Rev. Lett. 93, 185701 (2004).

5. S. Yoo, X.C. Zeng, X. Zhu, and J. Bai, "Possible Lowest-Energy Geometry of Silicon Clusters Si21 and Si25," J. Am. Chem. Soc. 125, 13318 (2003). 

4. S. Yoo and X.C. Zeng, "Global geometry optimization of silicon clusters described by three empirical potentials," J. Chem. Phys. 119, 1442 (2003). 

3. S. Yoo, Y.A. Lei, and X.C. Zeng, "Effect of polarizability of halide anions on the ionic solvation in water clusters," J. Chem. Phys. 119, 6083 (2003). 

2. S. Yoo and X.C. Zeng, "Monte Carlo simulation of vapor-liquid binodal of water," J. Chem. Phys. 117, 9518 (2002). 

1. S. Yoo, K.J. Oh, and X.C. Zeng, "Monte Carlo simulation of vapor-liquid homogeneous binary nucleation: Mutual enhancement of nucleation in a partially miscible system," J. Chem. Phys. 115, 8518 (2001).

Book Chapter