Segmentation Free Word Spotting
We propose a segmentation-free approach to word spotting. Word images are first encoded into feature vectors using Fisher Vector. Then, these feature vectors are used together with pyramidal histogram of characters labels (PHOC) to learn SVM-based attribute models. Documents are represented by these PHOC based word attributes. To efficiently compute the word attributes over a sliding window, we propose touse an integral image representation of the document.
[paper][code]