Publications

Submitted

[S2] Xu, S., Does stress drop positively or negatively correlate with rupture speed?, revision submitted to Journal of Geophysical Research: Solid Earth, on January 31, 2024.

[S1] Ji, Y., A. R. Niemeijer, D. H. Baden, F. Yamashita, S. Xu, L. B. Hunfeld, R. P. J. Pijnenburg, E. Fukuyama, and C. J. Spiers, Friction law for earthquake nucleation: size doesn’t matter, submitted on February 2, 2022.

[S0] Fukuyama, E., S. Xu, and F. Yamashita, Supersonic propagation of slow slip rupture during rock friction experiments, submitted, 2020.


Peer-reviewed articles

[31] Wang, L., S. Xu, Y. Zhuo, P. Liu, and S. Ma (2024), Unraveling the roles of fault asperities over earthquake cycles, Earth and Planetary Science Letters, 636, 118711, doi:10.1016/j.epsl.2024.118711.

[30] Wang, Q., Y. Zhang, L. Wang, P. Yu, S. Guerin-Marthe, X. Peng, S. Xu, P. Martínez-Garzón, and M. Bohnhoff (2024), Evolution of shear rupture along a prescribed interface using the Discontinuous Deformation Analysis method, Rock Mechanics and Rock Engineering, doi:10.1007/s00603-024-03897-4.

[29] Liu-Zeng, J., Z. Liu, X. Liu, C. Milliner, A. Rodriguez Padilla, S. Xu, J.-P. Avouac, W. Yao, Y. Klinger, L. Han, Y. Shao, X. Yan, S. Aati, and Z. Shao (2024), Fault orientation trumps fault maturity in controlling coseismic rupture characteristics of the 2021 Maduo earthquake, AGU Advances, 5(2), doi:10.1029/2023AV001134.

[28] Wan, Z., R. Dong, D. Wang, S. Xu, Z. Wang, and Q. Wang (2024), Along-strike Variation of Rupture Characteristics and Aftershock Patterns of the 2023 Mw 7.8 Türkiye Earthquake Controlled by Fault Structure, Seismological Research Letters, XX, 1–10, doi: 10.1785/0220230378.

[27] Lu, R., Y. Gao, Y. Hu, X. Lai, H. Li, J. Lu, L. Shao, P. Wang, W. Wang, W. Wang, C. Xia, H. Xu, R. Xu, S. Xu, H. Yue, L. Zhao, X. Zheng, E. Zhou, and Y. Zou (2024), Quakes: from the Earth to Stars, Scientia Sinica Physica, Mechanica & Astronomica, 10.1360/SSPMA-2023-0424, in press.

[26] Ding, X., J. Xie, S. Xu (2024), Dynamic activation of near-orthogonal conjugate faults during earthquakes: Insights from the 2023 Türkiye Mw 7.6 earthquake, Chinese Science Bulletin, 69(11), 1501–1516, doi:10.1360/TB-2023-0894.

[25] Ding, X., S. Xu, Y. Xie, M. van den Ende, J. Premus, and J.-P. Ampuero (2023), The sharp turn: Backward rupture branching during the 2023 Mw 7.8 Kahramanmaraş (Türkiye) earthquake, Seismica, 2(3), doi:10.26443/seismica.v2i3.1083.

[24] Cheng, C., D. Wang, Q. Yao, L. Fang, S. Xu, Z. Huang, T. Liu, Z. Wang, and X. Huang (2023), The 2021 Mw 7.3 Madoi, China earthquake: Transient supershear ruptures on a presumed immature strike-slip fault, Journal of Geophysical Research: Solid Earth Special Issue "100-Year Anniversary of the Great 1920 Haiyuan Earthquake: What Have We Learned on Large Continental Earthquakes and Faults?", 128, e2022JB024641, doi:10.1029/2022JB024641.

[23] Xu, S., E. Fukuyama, F. Yamashita, H. Kawakata, K. Mizoguchi, and S. Takizawa (2023), Fault strength and rupture process controlled by fault surface topography, Nature Geoscience, 16, 94–100, doi:10.1038/s41561-022-01093-z.

[22] Yamashita, F., E. Fukuyama, and S. Xu (2022), Foreshock activity promoted by locally elevated loading rate on a 4-meter-long laboratory fault, Journal of Geophysical Research: Solid Earth, 127, e2021JB023336, doi:10.1029/2021JB023336.

[21] Yoshida, K., N. Uchida, H. Kubo, R. Takagi, and S. Xu (2022), Prevalence of updip rupture propagation in interplate earthquakes along the Japan Trench, Earth and Planetary Science Letters, 578, 117306, doi:10.1016/j.epsl.2021.117306.

[20] Yamashita, F., E. Fukuyama, S. Xu, H. Kawakata, K. Mizoguchi, and S. Takizawa (2021), Two end-member earthquake preparations illuminated by foreshock activity on a meter-scale laboratory fault, Nature Communications, 12, 4302, doi:10.1038/s41467-021-24625-4.

[19] Xu, S. (2020), Recognizing fracture pattern signatures contributed by seismic loadings, Interpretation – Special Issue "Seismic interpretation of fractures in deep subsurface", 8(4), SP95–SP108, doi:10.1190/int-2020-0033.1.

[18] Xu, S., E. Fukuyama, F. Yamashita, and S. Takizawa (2019), Evolution of Fault-Interface Rayleigh Wave speed over simulated earthquake cycles in the lab: Observations, interpretations, and implications, Earth and Planetary Science Letters, 524, 115720, doi:10.1016/j.epsl.2019.115720.

[17] Xu, S. (2019), Probing earthquake physics using multidisciplinary approaches, Zisin, 72(2), 17–34, doi:10.4294/zisin.2018-12.

[16] Xu, S., E. Fukuyama, and F. Yamashita (2019), Robust estimation of rupture properties at propagating front of laboratory earthquakes, Journal of Geophysical Research: Solid Earth, 124(1), 766–787, doi:10.1029/2018JB016797.

[15] Xu, S., E. Fukuyama, A. Sagy, and M.-L. Doan (2018), Preface: Physics of Earthquake Rupture Propagation, Tectonophysics – Special Issue "Physics of Earthquake Rupture Propagation", 733, 1–3, doi:10.1016/j.tecto.2018.04.013.

[14] Yamashita, F., E. Fukuyama, S. Xu, K. Mizoguchi, H. Kawakata and S. Takizawa (2018), Rupture preparation process controlled by surface roughness on meter-scale laboratory fault, Tectonophysics – Special Issue "Physics of Earthquake Rupture Propagation", 733, 193–208, doi:10.1016/j.tecto.2018.01.034.

[13] Fukuyama, E., K. Tsuchida, H. Kawakata, F. Yamashita, K. Mizoguchi and S. Xu (2018), Spatiotemporal complexity of 2-D rupture nucleation process observed by direct monitoring during large-scale biaxial rock friction experiments, Tectonophysics – Special Issue "Physics of Earthquake Rupture Propagation", 733, 182–192, doi:10.1016/j.tecto.2017.12.023.

[12] Xu, S., E. Fukuyama, F. Yamashita, K. Mizoguchi, S. Takizawa and H. Kawakata (2018), Strain rate effect on fault slip and rupture evolution: Insight from meter-scale rock friction experiments, Tectonophysics – Special Issue "Physics of Earthquake Rupture Propagation", 733, 209–231, doi:10.1016/j.tecto.2017.11.039.

[11] Aldam, M., S. Xu, E. A. Brener, Y. Ben-Zion and E. Bouchbinder (2017), Non-monotonicity of the frictional bimaterial effect, Journal of Geophysical Research: Solid Earth, 122(10), 8270–8284, doi:10.1002/2017JB014665.

[10] Xu, S. and Y. Ben-Zion (2017), Theoretical constraints on dynamic pulverization of fault zone rocks, Geophysical Journal International, 209(1), 282–296, doi:10.1093/gji/ggx033.

[9] Xu, S., E. Fukuyama, H. Yue and J.-P. Ampuero (2016), Simple crack models explain deformation induced by subduction zone megathrust earthquakes, Bulletin of the Seismological Society of America, 106(5), 2275–2289, doi:10.1785/0120160079.

[8] Fukuyama, E., S. Xu, F. Yamashita and K. Mizoguchi, Cohesive zone length of metagabbro at supershear rupture velocity (2016), Journal of Seismology – Special Issue "Imaging Earthquakes and Earth Structure Through Waves, Honoring Professor Raul Madariaga", 20(4), 1207–1215,  doi:10.1007/s10950-016-9588-2.

[7] Yamashita, F., E. Fukuyama, K. Mizoguchi, S. Takizawa, S. Xu and H. Kawakata (2015), Scale dependence of rock friction at high work rate, Nature, 528, 254–257, doi:10.1038/nature16138.

[6] Xu, S., E. Fukuyama, Y. Ben-Zion and J.-P. Ampuero (2015), Dynamic rupture activation of backthrust fault branching, Tectonophysics, 644–645, 161–183, doi:10.1016/j.tecto.2015.01.011.

[5] Xu, S., Y. Ben-Zion, J.-P. Ampuero and V. Lyakhovsky (2015), Dynamic ruptures on a frictional interface with off-fault brittle damage: Feedback mechanisms and effects on slip and near-fault motion, Pure and Applied Geophysics, 172, 1243–1267, doi:10.1007/s00024-014-0923-7.

[4] Xu, S. and Y. Ben-Zion (2013), Numerical and theoretical analyses of in-plane dynamic rupture on a frictional interface and off-fault yielding patterns at different scales, Geophysical Journal International, 193, 304–320, doi:10.1093/gji/ggs105.

[3] Xu, S., Y. Ben-Zion, and J.-P. Ampuero (2012), Properties of inelastic yielding zones generated by in-plane dynamic ruptures: II. Detailed parameter-space study, Geophysical Journal International, 191, 1343–1360, doi:10.1111/j.1365-246X.2012.05685.x.

[2] Xu, S., Y. Ben-Zion and J.-P. Ampuero (2012), Properties of inelastic yielding zones generated by in-plane dynamic ruptures: I. Model description and basic results, Geophysical Journal International, 191, 1325–1342, doi:10.1111/j.1365-246X.2012.05679.x.

[1] Ben-Zion, Y., T. Rockwell, Z. Shi and S. Xu (2012), Reversed-polarity secondary deformation structures near fault stepovers, Journal of Applied Mechanics – Special Issue "Honoring Professor James R. Rice", 79(3), 031025, doi:10.1115/1.4006154.


Non-peer-reviewed

[1] Xu, S., Interaction between dynamic ruptures and off-fault yielding characterized by different rheologies (2013), Ph.D. thesis, University of Southern California, Los Angeles, CA, USA.


In preparation 

[P1] Rupture transition from sub-Rayleigh to supershear over meter-scale rocks in the lab

[P2] Transient excitation of supershear ruptures along a heterogeneous fault: insight from laboratory experiments

[P3] A revisit to lab-derived constitutive friction laws: right and wrong

[P4] A new rock damage signature indicating seismic slip

[P5] Rupture complexity observed in the lab reveals different short- and long-term fault behaviors 


Presentations reported in recent meetings (first author only)

Workshop: Frontiers in Studies of Earthquakes and Faults, 2017

Towards probing the true frictional properties from off-fault measurements during laboratory earthquakes, Southern University of Science and Technology, Shenzhen, China, November 27 – December 1, 2017.


JpGU-AGU Joint Meeting, 2017

Strain rate effect on rupture nucleation and mainshock propagation speed, Chiba-city, Japan, May 20 – 25, 2017.

Sequential activation of reverse and normal faulting in the upper plate during the 2011 Tohoku earthquake, Chiba-city, Japan, May 20 – 25, 2017.


Science of Slow Earthquakes, Joint Group Meeting, 2017

Laboratory investigation of fault motion along a metagabbro-marble interface, Fukuoka, Japan, February 21 – 22, 2017.


American Geophysical Union, Fall Meeting, 2016

Influence of fault surface heterogeneity on apparent frictional strength, slip mode and rupture mode: insights from meter-scale rock friction experiments, San Francisco, December 12 – 16, 2016.


Seismological Society of Japan, Fall Meeting, 2016

Revisiting the slip-weakening friction: probe into the true source properties from off-fault measurements, Nagoya, Japan, October 5 – 7, 2016


Joint Workshop on Slow Earthquakes, 2016

Effect of loading rate on the slow slip phase preceding mainshocks: insight from laboratory friction experiments, Earthquake Research Institute at the University of Tokyo, Tokyo, Japan, September 13 – 15, 2016.


Japan Geoscience Union Meeting, 2016 

Revisiting the slip-weakening friction: probe into the true source properties from off-fault measurements, Chiba-city, Japan, May 22 – 26, 2016.


American Geophysical Union, Fall Meeting, 2015

Brittle asperities and stick-slip motion: insight from friction experiments along a gabbro/marble interface, San Francisco, December 14 – 18, 2015.


Seismological Society of Japan, Fall Meeting, 2015

Brittle asperities and stick-slip motion: insight from friction experiments along a gabbro/marble interface, Kobe, Japan, October 26 – 28, 2015.


9th APEC Cooperation for Earthquake Simulation International Workshop, 2015

Rupture complexity revealed by laboratory friction experiments over meter-scale rocks, Chengdu, China, August 10 – 16, 2015.


Workshop on Numerical Modeling of Earthquake Motions: Waves and Ruptures, 2015

Evolution of rupture style with total fault displacement: insight from meter-scale direct shear experiments, Smolenice Castle near Bratislava, Slovakia, July 5 – 9. 2015.

Laboratory investigation of slip mode along a bimaterial (gabbro/marble) fault interface: preliminary results and implications, Smolenice Castle near Bratislava, Slovakia, July 5 – 9. 2015.


26th International Union of Geodesy and Geophysics, General Assembly, 2015

Evolution of rupture style with total fault displacement: insight from meter-scale direct shear experiments, Prague, Czech Republic, June 22 – July 2, 2015.


Seismological Society of Japan, Fall Meeting, 2014

Evolution of rupture style with accumulation of fault displacement during large-scale biaxial friction experiments, Niigata, Japan, November 24 – 26, 2014.


American Geophysical Union, Fall Meeting, 2013

Fault barrier favors activation of backthrusts near segment ends of megathrust ruptures, San Francisco, December 9 – 13, 2013.