Examples of SOMA(k,7)s

We give here examples of SOMA(k,7)s, whose ud-types give the ud-types of an arbitrary SOMA(k,7) from our classifications. Note here these examples give all the possible ud-types of an arbitrary SOMA(k,7).

A SOMA(6,7) of ud-type (1,1,1,1,1,1)
1
8
15
22
29
36
2
9
16
23
30
37
3
10
17
24
31
38
4
11
18
25
32
39
5
12
19
26
33
40
6
13
20
27
34
41
7
14
21
28
35
42
7
11
17
27
33
37
1
13
18
28
31
40
5
8
21
23
34
39
3
9
15
26
35
41
2
14
20
22
32
38
4
12
16
24
29
42
6
10
19
25
30
36
4
13
19
23
35
38
6
14
17
26
29
39
1
9
20
25
33
42
2
12
21
27
31
36
7
8
18
24
30
41
5
10
15
28
32
37
3
11
16
22
34
40
3
12
20
28
30
39
4
10
21
22
33
41
7
13
16
26
32
36
1
14
19
24
34
37
6
11
15
23
31
42
2
8
17
25
35
40
5
9
18
27
29
38
6
9
21
24
32
40
7
12
15
25
34
38
2
11
19
28
29
41
5
13
17
22
30
42
1
10
16
27
35
39
3
14
18
23
33
36
4
8
20
26
31
37
5
14
16
25
31
41
3
8
19
27
32
42
6
12
18
22
35
37
7
10
20
23
29
40
4
9
17
28
34
36
1
11
21
26
30
38
2
13
15
24
33
39
2
10
18
26
34
42
5
11
20
24
35
36
4
14
15
27
30
40
6
8
16
28
33
38
3
13
21
25
29
37
7
9
19
22
31
39
1
12
17
23
32
41



A SOMA(3,7) of ud-type (1,2)
1
8 9
2
10 11
3
12 13
4
14 15
5
16 17
6
18 19
7
20 21
7
14 18
1
12 16
4
8 17
2
9 19
6
15 20
3
10 21
5
11 13
6
16 21
5
9 20
1
10 18
7
8 11
4
12 19
2
13 15
3
14 17
4
13 20
3
8 15
5
19 21
6
10 17
1
11 14
7
9 12
2
16 18
3
11 19
6
13 14
7
15 16
5
12 18
2
8 21
1
17 20
4
9 10
5
10 15
7
17 19
2
14 20
1
13 21
3
9 18
4
11 16
6
8 12
2
12 17
4
18 21
6
9 11
3
16 20
7
10 13
5
8 14
1
15 19


An indecomposable SOMA(3,7)
1 4 7 2 10 13 3 5 16 8 11 19 6 12 20 9 14 17 15 18 21
3 6 9 1 12 15 2 4 17 7 10 20 5 11 21 8 13 18 14 16 19
2 5 8 3 11 14 1 6 18 9 12 21 4 10 19 7 15 16 13 17 20
11 15 17 4 16 20 7 13 21 1 5 14 2 9 18 3 12 19 6 8 10
10 14 18 6 17 21 9 15 19 3 4 13 1 8 16 2 11 20 5 7 12
12 13 16 5 18 19 8 14 20 2 6 15 3 7 17 1 10 21 4 9 11
19 20 21 7 8 9 10 11 12 16 17 18 13 14 15 4 5 6 1 2 3


An indecomposable SOMA(4,7)
1 2 5 8 3 11 14 17 20 21 23 26 9 10 15 24 4 18 25 27 6 12 13 22 7 16 19 28
20 22 25 28 1 4 7 9 2 12 16 18 5 11 13 21 8 10 14 23 3 19 24 26 6 15 17 27
4 13 15 19 21 22 24 27 1 3 6 10 2 17 23 28 7 11 12 20 8 9 16 25 5 14 18 26
6 7 14 24 2 13 25 26 8 17 19 22 1 16 20 27 3 5 9 28 11 15 18 23 4 10 12 21
9 17 18 21 5 6 16 23 4 11 24 28 12 14 19 25 1 15 22 26 2 7 10 27 3 8 13 20
3 12 23 27 10 18 19 20 5 7 15 25 4 6 8 26 13 16 17 24 1 14 21 28 2 9 11 22
10 11 16 26 8 12 15 28 9 13 14 27 3 7 18 22 2 6 19 21 4 5 17 20 1 23 24 25

This page is maintained by John Arhin.

Last updated: September 5th 2007.

Comments