D:\java\MinShip\my-minship-app>mvn package
[INFO] Scanning for projects...
[INFO]
[INFO] Using the builder org.apache.maven.lifecycle.internal.builder.singlethreaded.SingleThreadedBuilder with a thread count of 1
[INFO]
[INFO] ------------------------------------------------------------------------
[INFO] Building my-minship-app 1.0-SNAPSHOT
[INFO] ------------------------------------------------------------------------
[INFO]
[INFO] --- maven-resources-plugin:2.6:resources (default-resources) @ my-minship-app ---
[WARNING] Using platform encoding (Cp1252 actually) to copy filtered resources, i.e. build is platform dependent!
[INFO] skip non existing resourceDirectory D:\java\MinShip\my-minship-app\src\main\resources
[INFO]
[INFO] --- maven-compiler-plugin:2.5.1:compile (default-compile) @ my-minship-app ---
[WARNING] File encoding has not been set, using platform encoding Cp1252, i.e. build is platform dependent!
[INFO] Compiling 1 source file to D:\java\MinShip\my-minship-app\target\classes
[INFO]
[INFO] --- maven-resources-plugin:2.6:testResources (default-testResources) @ my-minship-app ---
[WARNING] Using platform encoding (Cp1252 actually) to copy filtered resources, i.e. build is platform dependent!
[INFO] skip non existing resourceDirectory D:\java\MinShip\my-minship-app\src\test\resources
[INFO]
[INFO] --- maven-compiler-plugin:2.5.1:testCompile (default-testCompile) @ my-minship-app ---
[INFO] Nothing to compile - all classes are up to date
[INFO]
[INFO] --- maven-surefire-plugin:2.12.4:test (default-test) @ my-minship-app ---
[INFO] Surefire report directory: D:\java\MinShip\my-minship-app\target\surefire-reports
-------------------------------------------------------
T E S T S
-------------------------------------------------------
Running com.smkltd.app.AppTest
Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.01 sec
Results :
Tests run: 1, Failures: 0, Errors: 0, Skipped: 0
[INFO]
[INFO] --- maven-jar-plugin:2.4:jar (default-jar) @ my-minship-app ---
[INFO] Building jar: D:\java\MinShip\my-minship-app\target\my-minship-app-1.0-SNAPSHOT.jar
[INFO]
[INFO] --- onejar-maven-plugin:1.4.4:one-jar (default) @ my-minship-app ---
[INFO] Using One-Jar to create a single-file distribution
[INFO] Implementation Version: 1.0-SNAPSHOT
[INFO] Using One-Jar version: 0.97
[INFO] More info on One-Jar: http://one-jar.sourceforge.net/
[INFO] License for One-Jar: http://one-jar.sourceforge.net/one-jar-license.txt
[INFO] One-Jar file: D:\java\MinShip\my-minship-app\target\my-minship-app-1.0-SNAPSHOT.one-jar.jar
[INFO] ------------------------------------------------------------------------
[INFO] BUILD SUCCESS
[INFO] ------------------------------------------------------------------------
[INFO] Total time: 2.481 s
[INFO] Finished at: 2015-01-26T05:56:55-05:00
[INFO] Final Memory: 14M/489M
[INFO] ------------------------------------------------------------------------
D:\java\MinShip\my-minship-app>java -cp target/* com.smkltd.app.NeuralNetwork
A couple of Hops: CurrentState.transpose()
-1.0000 -1.0000 1.0000 -1.0000 1.0000 1.0000 1.0000 -1.0000 -1.0000 1.0000
-1.0000 0.0000 1.0000 1.0000 1.0000 1.0000 0.0000 -1.0000 0.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
..................
Coupled Langevin Equations with corrrelated Gaussian white noise
Continuous time model expected value of neuron CurrentState.transpose()
dZ = N(Zdt + AdW)
-1.0000 -1.0000 1.0000 -1.0000 1.0000 1.0000 1.0000 -1.0000 -1.0000 1.0000
-0.9749 -0.9509 0.9755 -0.9351 0.9674 0.9671 0.9512 -0.9668 -0.9506 1.0000
-0.9497 -0.9035 0.9518 -0.8736 0.9361 0.9350 0.9049 -0.9339 -0.9025 1.0000
-0.9243 -0.8577 0.9290 -0.8154 0.9061 0.9038 0.8608 -0.9013 -0.8555 1.0000
-0.8990 -0.8136 0.9070 -0.7603 0.8773 0.8734 0.8190 -0.8690 -0.8097 1.0000
-0.8736 -0.7711 0.8857 -0.7082 0.8498 0.8439 0.7794 -0.8370 -0.7650 1.0000
-0.8483 -0.7301 0.8652 -0.6588 0.8235 0.8152 0.7418 -0.8054 -0.7214 1.0000
-0.8231 -0.6906 0.8453 -0.6120 0.7984 0.7874 0.7062 -0.7740 -0.6789 1.0000
-0.7980 -0.6525 0.8261 -0.5678 0.7743 0.7605 0.6725 -0.7431 -0.6375 1.0000
-0.7731 -0.6158 0.8075 -0.5259 0.7514 0.7344 0.6407 -0.7124 -0.5970 1.0000
-0.7484 -0.5805 0.7895 -0.4863 0.7295 0.7091 0.6106 -0.6821 -0.5576 1.0000
-0.7239 -0.5464 0.7721 -0.4488 0.7086 0.6847 0.5822 -0.6522 -0.5191 1.0000
-0.6997 -0.5137 0.7552 -0.4133 0.6887 0.6611 0.5555 -0.6226 -0.4816 1.0000
-0.6757 -0.4821 0.7389 -0.3797 0.6697 0.6384 0.5304 -0.5934 -0.4451 1.0000
-0.6521 -0.4518 0.7230 -0.3479 0.6517 0.6165 0.5067 -0.5646 -0.4094 1.0000
-0.6288 -0.4226 0.7076 -0.3179 0.6345 0.5954 0.4845 -0.5361 -0.3746 1.0000
-0.6058 -0.3945 0.6927 -0.2894 0.6183 0.5751 0.4637 -0.5080 -0.3406 1.0000
-0.5831 -0.3674 0.6783 -0.2625 0.6029 0.5556 0.4443 -0.4803 -0.3075 1.0000
-0.5608 -0.3414 0.6643 -0.2370 0.5882 0.5368 0.4261 -0.4529 -0.2753 1.0000
-0.5389 -0.3164 0.6507 -0.2128 0.5744 0.5189 0.4092 -0.4259 -0.2438 1.0000
-0.5174 -0.2924 0.6375 -0.1900 0.5613 0.5017 0.3935 -0.3993 -0.2131 1.0000
-0.4962 -0.2693 0.6247 -0.1683 0.5490 0.4852 0.3789 -0.3731 -0.1831 1.0000
-0.4755 -0.2470 0.6123 -0.1478 0.5374 0.4695 0.3654 -0.3472 -0.1539 1.0000
-0.4551 -0.2257 0.6002 -0.1284 0.5264 0.4545 0.3529 -0.3217 -0.1254 1.0000
-0.4352 -0.2052 0.5886 -0.1099 0.5162 0.4402 0.3414 -0.2966 -0.0976 1.0000
-0.4157 -0.1854 0.5772 -0.0924 0.5065 0.4267 0.3309 -0.2718 -0.0705 1.0000
-0.3965 -0.1665 0.5663 -0.0758 0.4975 0.4138 0.3213 -0.2475 -0.0441 1.0000
.................. iter = 26
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
.................. iter = 795
Printing row normalized PKQTC for MyNeuralNetwork
0.2500 0.2500 0.2500 0.2500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.2500 0.2500 0.2500 0.2500 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.2500 0.2500 0.2500 0.2500 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.3333 0.3333 0.0000 0.3333 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.1667 0.1667 0.1667 0.1667 0.1667 0.1667
0.0000 0.0000 0.0000 0.0000 0.0000 0.3333 0.3333 0.3333 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.5000 0.0000 0.5000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.3333 0.3333 0.3333
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.5000 0.5000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000
Printing N = sysmat for MyNeuralNetwork
-0.7500 0.2500 0.2500 0.2500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 -0.7500 0.2500 0.2500 0.2500 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 -0.7500 0.2500 0.2500 0.2500 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 -0.6667 0.3333 0.0000 0.3333 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 -0.8333 0.1667 0.1667 0.1667 0.1667 0.1667
0.0000 0.0000 0.0000 0.0000 0.0000 -0.6667 0.3333 0.3333 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.5000 0.0000 0.5000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.6667 0.3333 0.3333
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.5000 0.5000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Printing Gaussian white noise covariance matrix A.AT for MyNeuralNetwork
12.0156 -2.3722 -2.4423 -7.4692 0.0412 -6.1687 -2.7423 -2.1067 2.6456 -1.4936
-2.3722 7.8723 -3.8264 -0.3203 2.9152 -0.5710 2.8053 7.7808 3.2032 -1.5101
-2.4423 -3.8264 11.1944 0.8502 -2.2400 2.4936 0.9158 -3.9065 -4.9597 -2.3018
-7.4692 -0.3203 0.8502 11.0899 -0.1852 3.9205 5.9056 0.0376 -3.2538 5.5353
0.0412 2.9152 -2.2400 -0.1852 7.9969 -3.7415 0.2663 2.4438 5.1206 2.1550
-6.1687 -0.5710 2.4936 3.9205 -3.7415 8.2336 4.0974 -2.9308 -2.3097 1.3805
-2.7423 2.8053 0.9158 5.9056 0.2663 4.0974 11.5493 0.4381 -0.6725 2.8608
-2.1067 7.7808 -3.9065 0.0376 2.4438 -2.9308 0.4381 15.4952 5.5176 -0.4693
2.6456 3.2032 -4.9597 -3.2538 5.1206 -2.3097 -0.6725 5.5176 8.8133 1.4219
-1.4936 -1.5101 -2.3018 5.5353 2.1550 1.3805 2.8608 -0.4693 1.4219 8.5184
determinant = 346070.2923369596
condition = 1532.465320130049
Printing covariance matrix NA.ATNT for MyNeuralNetwork iter = 338
12.8379 1.0883 0.7567 -4.1529 1.8275 -1.7177 -3.8501 -2.2672 2.3939 0.0000
1.0883 6.5857 -3.1202 -2.4945 -0.3594 -2.9055 -1.4218 3.8959 2.8277 0.0000
0.7567 -3.1202 7.5896 -0.5197 -0.1590 1.4107 0.8643 0.6560 0.1925 0.0000
-4.1529 -2.4945 -0.5197 4.6175 -2.3856 1.9757 1.8252 -0.0792 -2.8351 0.0000
1.8275 -0.3594 -0.1590 -2.3856 5.7989 -1.7547 -2.4812 -1.1977 1.3142 0.0000
-1.7177 -2.9055 1.4107 1.9757 -1.7547 6.2432 0.9453 -3.8328 -1.6390 0.0000
-3.8501 -1.4218 0.8643 1.8252 -2.4812 0.9453 5.4269 -0.3520 -2.7311 0.0000
-2.2672 3.8959 0.6560 -0.0792 -1.1977 -3.8328 -0.3520 6.8848 1.9465 0.0000
2.3939 2.8277 0.1925 -2.8351 1.3142 -1.6390 -2.7311 1.9465 3.6219 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Printing covariance matrix <DZ.DZT> for MyNeuralNetwork iter = 338
Initial covariance matrix <DZ0.DZ0T> assumed to be identity matrix
9.5834 2.1616 2.2400 -1.3273 2.1164 -0.0369 -0.7052 0.3939 2.8498 1.0000
2.1616 5.1558 0.1991 0.2325 1.8645 0.4677 1.1906 4.3040 3.0889 1.0000
2.2400 0.1991 7.4414 2.0205 1.6492 3.4752 2.2454 1.2154 0.8347 1.0000
-1.3273 0.2325 2.0205 4.9554 0.2460 3.1340 2.7386 0.6488 -1.2503 1.0000
2.1164 1.8645 1.6492 0.2460 4.6502 0.3376 0.4782 1.4893 2.5493 1.0000
-0.0369 0.4677 3.4752 3.1340 0.3376 5.9637 2.8838 -0.3212 0.1046 1.0000
-0.7052 1.1906 2.2454 2.7386 0.4782 2.8838 5.5067 1.5939 0.0798 1.0000
0.3939 4.3040 1.2154 0.6488 1.4893 -0.3212 1.5939 7.5152 3.7033 1.0000
2.8498 3.0889 0.8347 -1.2503 2.5493 0.1046 0.0798 3.7033 4.6219 1.0000
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
N<DZ.DZT> + <DZ.DZT>NT + NA.ATNT = 0.00000000
determinant = 42397.420299500765
condition = 64.49475448984984
MyKron rank = 99
Printing covariance matrix <DZ.DZT>particular for MyNeuralNetwork.lyapunovEq()
Null matrix <DZ.DZT> for MyNeuralNetwork.lyapunovEq() is square matrix of 1's
Equilibrium points are const*null + particular
8.5834 1.1616 1.2400 -2.3273 1.1164 -1.0369 -1.7052 -0.6061 1.8498 -0.0000
1.1616 4.1558 -0.8009 -0.7675 0.8645 -0.5323 0.1906 3.3040 2.0889 -0.0000
1.2400 -0.8009 6.4414 1.0205 0.6492 2.4752 1.2454 0.2154 -0.1653 -0.0000
-2.3273 -0.7675 1.0205 3.9554 -0.7540 2.1340 1.7386 -0.3512 -2.2503 -0.0000
1.1164 0.8645 0.6492 -0.7540 3.6502 -0.6624 -0.5218 0.4893 1.5493 -0.0000
-1.0369 -0.5323 2.4752 2.1340 -0.6624 4.9637 1.8838 -1.3212 -0.8954 -0.0000
-1.7052 0.1906 1.2454 1.7386 -0.5218 1.8838 4.5067 0.5939 -0.9202 -0.0000
-0.6061 3.3040 0.2154 -0.3512 0.4893 -1.3212 0.5939 6.5152 2.7033 -0.0000
1.8498 2.0889 -0.1653 -2.2503 1.5493 -0.8954 -0.9202 2.7033 3.6219 -0.0000
-0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 0.0000
Checking
sysmat.times(particular).plus(particular.times(sysmat.transpose())).times(-1)
12.8379 1.0883 0.7567 -4.1529 1.8275 -1.7177 -3.8501 -2.2672 2.3939 -0.0000
1.0883 6.5857 -3.1202 -2.4945 -0.3594 -2.9055 -1.4218 3.8959 2.8277 -0.0000
0.7567 -3.1202 7.5896 -0.5197 -0.1590 1.4107 0.8643 0.6560 0.1925 -0.0000
-4.1529 -2.4945 -0.5197 4.6175 -2.3856 1.9757 1.8252 -0.0792 -2.8351 -0.0000
1.8275 -0.3594 -0.1590 -2.3856 5.7989 -1.7547 -2.4812 -1.1977 1.3142 -0.0000
-1.7177 -2.9055 1.4107 1.9757 -1.7547 6.2432 0.9453 -3.8328 -1.6390 -0.0000
-3.8501 -1.4218 0.8643 1.8252 -2.4812 0.9453 5.4269 -0.3520 -2.7311 -0.0000
-2.2672 3.8959 0.6560 -0.0792 -1.1977 -3.8328 -0.3520 6.8848 1.9465 -0.0000
2.3939 2.8277 0.1925 -2.8351 1.3142 -1.6390 -2.7311 1.9465 3.6219 -0.0000
-0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000
D:\java\MinShip\my-minship-app>