Working Papers
Kübler, F., Scheidegger, S., Surbeck, O. (2025). "Using Machine Learning to Compute Constrained Optimal Carbon Tax Rules". [Podcast on the paper by NotebookLM][ArXiV link]
Mlikota, M., Schorfheide, F., Scheidegger, S. (2025). "Sequential ABCs to Estimate Nonlinear DSGEs".
Eftekhari, A., Juillard, M., Rion, N., Scheidegger, S. (2025). "Scalable Global Solution Techniques for High-Dimensional Models in Dynare". [ArXiV link]
Chen., H., G. Gambarotta, Scheidegger, S., Xu, Y. (2025). "A Dynamic Model of Private Asset Allocation". [ArXiV link][Podcast on the paper by NotebookLM]
Renner, P., Scheidegger, S. (2020). “Machine learning for dynamic incentive problems”. [Code] [ Revise and resubmit, Review of Economic Studies]
Friedl, A., Kübler, F., Scheidegger, S., Usui, T. (2021). "Deep Uncertainty Quantification: With an Application to Integrated Assessment Models".
Nuno, G., Renner, P., Scheidegger, S. (2024). "Monetary Policy with Persistent Supply Shocks". [SUERF Policy Brief][Podcast on the paper by NotebookLM]
Gaegauf, L., Scheidegger, S., Trojani, F. (2023). "A comprehensive machine learning framework for dynamic portfolio choice with transaction costs". [Podcast on the paper by NotebookLM]
Bretscher, L., Fernandez-Villaverde, J., Scheidegger, S. (2021). "Ricardian Business Cycles"
Didisheim, A., Karyampas, D., Scheidegger, S. (2020). "Deep Replication."