論文

【査読あり論文】(執筆順) (16, 18, 23 は学生との共著論文)

23. Shun Maeta, Self-similar solutions to the Hesse flow,

Information Geometry, Vol. 4 2021, 313-327. (arXiv:2101.10251 [math DG]).

22. Shunya Fujii and Shun Maeta, Classification of generalized Yamabe solitons in Euclidean spaces,

International Journal of Mathematics, Vol. 32, No. 4, 2021, 12 pages. (arXiv:2009.13255 [math DG]).

21. Yu Fu, Shun Maeta and Ye-Lin Ou, Biharmonic hypersurfaces in a product space $L^m\times \mathbb{R}$,

Mathematische Nachrichten, Vol. 294, 2021 1724-1741. (arXiv:1906.01782 [math DG]).

20. Shun Maeta, Three-dimensional complete gradient Yamabe solitons with divergence-free Cotton tensor,

Annals of Global Analysis and Geometry, Vol 58, 2020, pp.227-237. (arXiv:1806.00795 [math DG]).

19. Shun Maeta, Complete Yamabe solitons with finite total scalar curvature,

Differential Geometry and its Applications, Vol. 66, 2019, pp.75-81. (arXiv:1711.07623 [math DG]).

18. Tatsuya Seko and Shun Maeta, Classification of almost Yamabe solitons in Euclidean spaces,

Journal of Geometry and Physics, Vol. 136, 2019, pp.97-103. (arXiv:1711.04428 [math DG]).

17. Shun Maeta and Ye-Lin Ou, Some classifications of biharmonic hypersurfaces with constant scalar curvature,

Pacific Journal of Mathematics, Vol. 306, 2020, pp.281-290, (arXiv:1708.08540 [math DG]).

16. Tomoya Miura and Shun Maeta,

Triharmonic Riemannian submersions from 3-dimensional manifolds of constant curvature,

Advances in Geometry, Vol. 21, 2021, pp.163-168. (arXiv:1608.06088 [math DG]).

15. Yong Luo and Shun Maeta, Biharmonic hypersurfaces in a sphere,

Proceedings of the American Mathematical Society, Vol. 145, 2017, pp.3109-3116.

14. Shun Maeta, Biharmonic hypersurfaces with bounded mean curvature,

Proceedings of the American Mathematical Society, Vol. 145, 2017, pp.1773-1779. (arXiv:1506.04476 [mathDG]).

13. Shun Maeta, Biharmonic submanifolds in manifolds with bounded curvature,

International Journal of Mathematics, Vol. 27, 2016, pp.15. (arXiv:1405.5947 [mathDG]).

12. Shun Maeta, Nobumitsu Nakauchi and Hajime Urakawa,

Triharmonic isometric immersions into a manifold of non-positively constant curvature,

Monatshefte für Mathematik, Vol. 177 (4), 2015, pp. 551--567. (arXiv:1309.0280 [mathDG]).

11. Shun Maeta, Polyharmonic maps of order k with finite $L^p$ k-energy into Euclidean spaces,

Proceedings of the American Mathematical Society, Vol. 143, 2015, pp. 2227-2234. (arXiv:1308.0420 [mathDG]).

10. Shun Maeta, Biharmonic maps from a complete Riemannian manifold into a non-positively curved manifold,

Annals of Global Analysis and Geometry, Vol. 46, 2014, pp. 75--85. (arXiv:1305.7065 [mathDG]).

9. Shun Maeta, Properly immersed submanifolds in complete Riemannian manifolds,

Advances in Mathematics, Vol. 253, 2014, pp. 139-151. (arXiv:1208.0473 [mathDG]).

8. Shun Maeta and Hajime Urakawa, Biharmonic Lagrangian submanifolds in Kaehler manifolds,

Glasgow Mathematical Journal, Vol. 55, 2013, pp 465-480. (arXiv:1203.4092 [mathDG]).

7. Shun Maeta, Biminimal properly immersed submanifolds in the Euclidean spaces,

Journal of Geometry and Physics, Vol. 62, 2012, pp. 2288-2293. (arXiv:1201.2872 [mathDG]).

6. Kazuo Akutagawa and Shun Maeta, Biharmonic properly immersed submanifolds in Euclidean spaces,

Geometriae Dedicata, Vol. 164, 2013, pp. 351-355. (arXiv:1106.3222 [mathDG]).

5. Shun Maeta, Polyharmonic submanifolds in Euclidean spaces,

Balkan Journal of Geometry and Its Applications, Vol. 17, No.1, 2012, pp. 70-77.

4. Shun Maeta, Triharmonic morphisms between Riemannian manifolds,

Journal of Geometry, Vol. 105, 2014, pp. 507-527.

3. Shun Maeta, Construction of triharmonic maps,

Houston Journal of Mathematics, Vol. 41, No. 2, 2015, pp. 433-444.

2. Shun Maeta, k-harmonic maps into a Riemannian manifold with constant sectional curvature,

Proceedings of the American Mathematical Society, Vol. 140, 2012, pp. 1835-1847. (arXiv:1005.1393 [mathDG]).

1. Shun Maeta, The second variational formula of the k-energy and k-harmonic curves,

Osaka Journal of Mathematics, Vol. 49, 2012, pp. 1035-1063. (arXiv:1008.3700 [mathDG]).


【プレプリント】

25. Burcu Bektaş Demirci, Shunya Fujii and Shun Maeta,

Classification of conformal solitons in pseudo-Euclidean spaces,

submitted (arXiv2201.05417[mathDG])

24. Shun Maeta, Classification of gradient conformal solitons,

submitted (arXiv:2107.05487[math DG])


【報告集・論文等(査読なし)】

10. 前田 瞬, divergence-freeコットンテンソルを持つ3次元完備勾配山辺ソリトン,

日本数学会2020年度年会,幾何学分科会・講演アブストラクト,(慶應大学) 2020, 2pages

9. 浦川 肇,中内 伸光,前田 瞬,Chen予想と3重調和部分多様体,

日本数学会2014年度年会,幾何学分科会・講演アブストラクト, (学習院大学), 2014, pp. 45--46.

8. 前田 瞬, 2重調和部分多様体と Chen 予想,

部分多様体幾何とリー群作用2013報告書, (東京理科大学神楽坂キャンパス森戸記念館), 2013, 9 pages.

7. 前田 瞬, 2重調和部分多様体と Chen 予想,

部分多様体幾何とリー群作用2013予稿集, (東京理科大学神楽坂キャンパス森戸記念館), 2013, 6 pages.

6. 前田 瞬, 浦川 肇,複素空間形内の2重調和ラグランジアン部分多様体,

日本数学会2013年度年会, 幾何学分科会・講演アブストラクト, (京都大学), 2013, 2 pages.

5. 前田 瞬, 2重調和部分多様体と一般化された Chen 予想,

日本数学会2013年度年会, 幾何学分科会・講演アブストラクト, (京都大学), 2013, 2 pages.

4. 前田 瞬, 2重調和部分多様体における一般化された Chen 予想について,

部分多様体論・湯沢2012報告集, (湯沢グランドホテル), 2012, 5 pages.

3. 前田 瞬, 2重調和部分多様体における一般化された Chen 予想について,

第59回幾何シンポジウム, (九州大学), 2012, pp. 173-176.

2. 前田 瞬, k 重調和写像について,

日本数学会2011年度秋季総合分科会, 幾何学分科会・講演アブストラクト, (信州大学), 2011, 2 pages.

1. 前田 瞬, k重調和写像と Chen 予想へのアプローチ,

第 58 回幾何学シンポジウム講演要旨, (山口大学), 2011, pp. 43-46.