M. DiNunzio and S. Kruk. Soccer Tournament Scheduling Using Constraint Programming. Accepted in Springer Lecture Notes in Computer Science. 2010.
S. Kruk and S. Toma. New facets of the Polytope of all-different predicate. Submitted.
S. Kruk and S. Toma. Polytope of all-different predicate. Congressus Numerantium. 175, pages 117--159, 2009.
E. Cheng, S. Kruk. A case study of an integer programming model for instructor assignments and scheduling problem, Proceeding of the 3rd Multidiciplinary International Conference, In P. Baptiste, G. Kendall, A. Munier-Kordon and F. Sourd, Editors pages 267-275. 2007.
S. Puwal, B. Roth and S. Kruk. Automating phase singularity localization in mathematical models of cardiac tissue dynamics. Mathematical Medicine and Biology, 22(4), pages 335--346, 2005.
E. Cheng, S.G. Kruk. Routing in Unidirectional (n,k)-Star Graphs. Journal of Systemics, Cybernetics and Informatics 46--50, 2005. Paper (pdf)
E. Cheng, L. Kikas and S. Kruk. A disjoint path problem in the alternating group praphs. Congressus Numerantium. 175, pages 117--159, 2005. Paper (pdf)
H. H. Bauschke, P. L. Combettes, and S. G. Kruk. Extrapolation algorithm for affine-convex feasibility problems. Numerical Algorithms, Springer. 41, pages 239--274 December 2005.Paper (pdf)
Eddie Cheng, Raymond P. Kleinberg, Serge G. Kruk, William A. Lindsey, and Daniel E. Steffy. A strictly combinatorial approach to a university exam scheduling problem.Congressus Numerantium} 167, pages 121--132, 2004. Paper (pdf)
S.A. Nassar, K.T. Andrews, S. Kruk and M.Shillor. Modelling and Simulations of a Bonded Rod. Mathematical and Computer Modelling}, 42, pages 553--572, 2005.
H. Bauschke and S. Kruk. Reflection-projection method for convex feasibility problems with an obtuse cone. Journal of Optimization Theory and Applications, Vol 120, no 3, Kluwer Academic, March 2004.
Y. Chen, E. Cheng, S. Kruk and M. Lipman. A note on the diameter of unidirectional split-stars.Congressus Numerantium 163, pages 49--56, 2003.
E. Cheng, S. Kruk and M. Lipman. On the Multicommodity Flow Formulation of the Student Scheduling Problem.Congressus Numerantium 160, pages 177--181, 2003.
S. Kruk and H. Wolkowicz. Convergence of a short-step primal-dual algorithm based on the Gauss-Newton direction.Journal of Applied Mathematics} Vol 10 pages 517--534, 2003.
E. Cheng, S. Kruk and M. Lipman.Flow Formulations for the Student Scheduling Problem. In Edmund Burke and Patrick De Causmaecker, editors, Proceedings of the 4$^{th}$ international conference on the Practice and Theory of Automated Timetabling}, pages 298--308. 2002.
E. Cheng, S. Kruk and M. Lipman. Flow formulations for the student scheduling problem. Practice and Theory of Automated Timetabling IV, edited by Burke and De Causmaecker, Springer-Verlag, Lecture Notes in Computer Science 2740, pages 299--309 2003. (Revision of above)
E. Cheng, S. Kruk and M. Lipman. An Optimization Formulation for the existence of Complete Spheres-of-Influence graphs. Congressus Numerantium} 158, pages 109--117, 2002.
S. Kruk, M. Muramatsu, F. Rendl, R.J. Vanderbei and H. Wolkowicz. The gauss-newton direction in semidefinite programming. Optimization Software and Methods. 15(1):1--27,April 2001.
S. Kruk and H. Wolkowicz. S{Q}$^2${P}}, sequential quadratic constrained quadratic programming. In Ya~xiang Yuan, editor, Advances in Nonlinear Programming,volume~14 of Applied Optimization, pages 177--204. Kluwer, Dordrecht, 1998.
S. Kruk and H. Wolkowicz. Pseudo-linear programming. Siam Review, 41(4):795--805, 1999.
S. Kruk and H. Wolkowicz.Sequential Quadratic Constrained Quadratic Programming for General nonlinear programming. In H. Wolkowicz, R. Saigal and L. Vandenberghe, editors, Handbook of Semidefinite Programming, volume~27 of International Series in Operations Research and Management Science, pages 563--574. Kluwer, Dordrecht, 2000.