Local solvability of partial differential equations, degenerate partial differential operators, pseudo-differential operators, a priori estimates, microlocal analysis, hypoellipticity, Carleman estimates, dispersive equations, pseudo-differential operators on Lie groups.
CV: My cv
PhD Thesis: My Thesis
S. Federico, D. Tramontana, Smoothing effect for third order operators with variable coefficients. Preprint (2025). Arxiv. https://arxiv.org/abs/2503.08656
S. Federico, D. Rottensteiner, M. Ruzhansky, Weyl Calculus on Graded Groups, Preprint. Arxiv https://arxiv.org/abs/2306.04275 (2023).
M. Chatzakou, S. Federico, B. Zegarlinski, Poincaré inequalities on Carnot Groups and spectral gap of Schrödinger operators, to appear in Journal of Lie Theory 35 (2025), No. 3, 629–650. Arxiv https://arxiv.org/abs/2211.09471.
Federico, S. (2024). Uniqueness results for variable coefficient Schrödinger equations. Bruno Pini Mathematical Analysis Seminar, 15(1), 60–78. https://doi.org/10.6092/issn.2240-2829/21055
S. Federico, (2025). On the Existence of a Weyl Calculus on Graded Lie Groups. In: Kumar, V., Rottensteiner, D., Ruzhansky, M. (eds) Pseudo-Differential Operators and Related Topics. PSORT 2024. Trends in Mathematics(), vol 8. Birkhäuser, Cham. https://doi.org/10.1007/978-3-031-71989-9_1
S. Federico, Carleman estimates for third order operators of KdV and non KdV-type and applications. Annali di Matematica 203, 2801–2803 (2024). https://doi.org/10.1007/s10231-024-01467-7
S. Federico, Z. Li, X. Yu, On the uniqueness of variable coefficient Schrödinger equations. Communications in Contemporary Mathematics Vol. 27 (2025), No. 03, 2450016, 45pp. https://doi.org/10.1142/S0219199724500160
D. Cardona, S. Federico, M. Ruzhansky, Subelliptic sharp Gårding inequality on compact Lie groups. Pure and Applied Analysis 6 (2024), No.2, 455-458. https://doi.org/10.2140/paa.2024.6.455. Arxiv https://arxiv.org/abs/2110.00838.
S. Federico, M. Ruzhansky, Smoothing and Strichartz estimates for degenerate Schrödinger-type equations, Nonlinear Analysis, Volume 242 (2024), 113500. https://www.sciencedirect.com/science/article/pii/S0362546X24000191?dgcid=author
M. Chatzakou, S. Federico, B. Zegarlinski, q-Poincaré inequalities on Carnot Groups with filiform type Lie algebra, Potential Anal. 60, 1067-1092 (2024). https://doi.org/10.1007/s11118-023-10079-4
S. Federico, Smoothing Effect and Strichartz Estimates for Some Time-degenerate Schrödinger Equations. In: Ruzhansky, M., Wirth, J. (eds) Harmonic Analysis and Partial Differential Equations (2022). Trends in Mathematics. Birkäuser, Cham. https://doi.org/10.1007/978-3-031-24311-0_2
S. Federico, On some variable coefficient Schrödinger operators on ℝ× ℝn and on ℝ×𝕋 2. Matemática Contemporânea Vol 52 (2022), ICMC Summer Meeting on Differential Equations - Chapter 2022, 17-37, http://doi.org/10.21711/231766362022/rmc522.
S. Federico, A. Parmeggiani, On a class of pseudodifferential operators on the product of compact Lie groups. Math. Nachr. 269 (2023), 217-242, https://doi.org/10.1002/mana.202100400.
S. Federico, G. Staffilani, Sharp Strichartz estimates for some variable coefficient Schrödinger operators on ℝ×𝕋 2. Mathematics in Engineering 2022, 4 (4): 1-23, doi:10.3934/mine.2022033.
S. Federico, G. Staffilani, Smoothing effect for time-degenerate Schrödinger operators, Journal of Differential Equations 298 (2021) 205-247, https://doi.org/10.1016/j.jde.2021.07.006.
S. Federico, Local Solvability of Some Partial Differential Operators with Non-smooth Coefficients, Springer Nature Switzerland AG 2021 M. Cicognani et al. (eds), Anomalies in Partial Differential Equations, Springer INdAM Series 43, http://doi.org/10.1007/978-3-030-61346-4_12.
S. Federico, A. Parmeggiani, On the Solvability of a Class of Second Order Degenerate Operators. P. Boggiatto et al. (eds.), Advances in Microlocal and Time-Frequency Analysis, Springer Nature Switzerland AG 2020, pp. 207-226.
S. Federico, Sufficient conditions for local solvability of some degenerate PDO with complex subprincipal symbol. J. Pseudo-Differ. Oper. Appl. 10 (4) (2019) 929-940, doi:10.1007/s11868-018-0264-x.
S. Federico, A. Parmeggiani, On the local solvability of a class of degenerate second order operators with complex coefficients. Comm. Partial Differential Equations 43 (10) (2018) 1485-1501.
S. Federico, Local solvability of a class of degenerate second order operators. Bruno Pini Mathematical Analysis Seminar, Vol. 8 (2017) 185-203.
S. Federico, A model of solvable second order PDE with non smooth coefficients. J. Math. Anal. Appl. 440 (2016) 661-676.
S. Federico, A. Parmeggiani, Local solvability of a class of degenerate second order operators. Comm. Partial Differential Equations 41 (03) (2016) 484-514.