1. Harrison, K.R., Elsayed, S., Garanovich, I.L., Weir, T., Boswell, S.G. and Sarker, R.A., 2022. Evolutionary and Memetic Computing for Project Portfolio Selection and Scheduling. Springer International Publishing AG.
2. Leu, G., Singh, H., Elsayed, S. (Eds.). (2016). Intelligent and Evolutionary Systems: The 20th Asia Pacific Symposium, IES 2016, Canberra, Australia, November 2016, Proceedings (Vol. 8). Springer
3. Hamza, N., Elsayed, S., Sarker, R. and Essam, D., 2025. Constraint Consensus assisted Evolutionary Algorithm for large-scale constrained optimization. Applied Soft Computing, p.113383.
4. Liu, J., Sarker, R., Essam, D., & Elsayed, S. (n.d.). A decomposition-based hybrid algorithm for large-scale project portfolio selection and scheduling with reaction to changing environments. IEEE Transactions on Engineering Management, PP(99), 1-20. doi:10.1109/tem.2025.3568826
5. Abdel-Basset, M., Mohamed, R., Sallam, K. M., & Elsayed, S. (2025). Efficient algorithms for optimal path planning of unmanned aerial vehicles in complex three-dimensional environments. Knowledge-Based Systems, 316. doi:10.1016/j.knosys.2025.113344
6. Radwan, M., Elsayed, S., Sarker, R., Essam, D., & Coello Coello, C. (2025). Neuro-PSO algorithm for large-scale dynamic optimization. Swarm and Evolutionary Computation, 94. doi:10.1016/j.swevo.2025.101865
7. Windras Mara, S. T., Sarker, R., Essam, D., & Elsayed, S. (2024). An Adaptive Memetic Algorithm for a Cost-Optimal Electric Vehicle-Drone Routing Problem. IEEE Transactions on Intelligent Transportation Systems, 25(12), 19619-19632. doi:10.1109/TITS.2024.3467219
8. Li, K., Elsayed, S., Sarker, R., & Essam, D. (2024). Multiple landscape measure-based approach for dynamic optimization problems. Swarm and Evolutionary Computation, 88, 101578. doi:10.1016/j.swevo.2024.101578
9. Liu, J., Sarker, R., Elsayed, S., Essam, D., & Siswanto, N. (2024). Large-scale evolutionary optimization: A review and comparative study. Swarm and Evolutionary Computation, 85. doi:10.1016/j.swevo.2023.101466
10. Mara, S. T. W., Sarker, R., Essam, D., & Elsayed, S. (2023). Solving electric vehicle–drone routing problem using memetic algorithm. Swarm and Evolutionary Computation, 79. doi:10.1016/j.swevo.2023.101295
11. Mohamed, R. E., Hunjet, R., Elsayed, S., & Abbass, H. (2023). Connectivity-Aware Particle Swarm Optimisation for Swarm Shepherding. IEEE Transactions on Emerging Topics in Computational Intelligence, 7(3), 661-683. doi:10.1109/TETCI.2022.3195178
12. Hamza, N., Sarker, R., Essam, D., & Elsayed, S. (2023). Evolutionary approach for dynamic constrained optimization problems. Alexandria Engineering Journal, 66, 827-843. doi:10.1016/j.aej.2022.10.072
13. Meselhi, M. A., Elsayed, S. M., Essam, D. L., & Sarker, R. A. (2023). Modified Differential Evolution Algorithm for Solving Dynamic Optimization with Existence of Infeasible Environments. Computers, Materials and Continua, 74(1). doi:10.32604/cmc.2023.027448
14. Zaman, F., Elsayed, S., Sarker, R., Essam, D., & Coello, C. A. C. (2022). Pro-Reactive Approach for Project Scheduling Under Unpredictable Disruptions. IEEE Transactions on Cybernetics, 52(11), 11299-11312. doi:10.1109/TCYB.2021.3097312
15. Ahrari, A., Elsayed, S., Sarker, R., Essam, D., & Coello Coello, C. A. (2023). Revisiting Implicit and Explicit Averaging for Noisy Optimization. IEEE Transactions on Evolutionary Computation, 27(5), 1250-1259. doi:10.1109/TEVC.2022.3201090
16. Harrison, K. R., Elsayed, S. M., Weir, T., Garanovich, I. L., Boswell, S. G., & Sarker, R. A. (2022). Solving a novel multi-divisional project portfolio selection and scheduling problem. Engineering Applications of Artificial Intelligence, 112, 104771. doi:10.1016/j.engappai.2022.104771
17. Harrison, K. R., Elsayed, S. M., Garanovich, I. L., Weir, T., Boswell, S. G., & Sarker, R. A. (2022). Generating datasets for the project portfolio selection and scheduling problem. Data in Brief, 42, 10 pages. doi:10.1016/j.dib.2022.108208
18. Ahrari, A., Elsayed, S., Sarker, R., Essam, D., & Coello, C. A. C. (2022). PyDDRBG: A Python framework for benchmarking and evaluating static and dynamic multimodal optimization methods. SoftwareX, 17, 100961. doi:10.1016/j.softx.2021.100961
19. Meselhi, M., Sarker, R., Essam, D., & Elsayed, S. (2022). A decomposition approach for large-scale non-separable optimization problems. Applied Soft Computing, 115. doi:10.1016/j.asoc.2021.108168
20. Ahrari, A., Elsayed, S., Sarker, R., Essam, D., & Coello, C. A. C. (2022). Static and Dynamic Multimodal Optimization by Improved Covariance Matrix Self-Adaptation Evolution Strategy with Repelling Subpopulations. IEEE Transactions on Evolutionary Computation, 26(3), 527-541. doi:10.1109/TEVC.2021.3117116
21. Elfeky, E. Z., Elsayed, S., Marsh, L., Essam, D., Cochrane, M., Sims, B., & Sarker, R. (2021). A Systematic Review of Coevolution in Real-Time Strategy Games. IEEE Access, 9, 136647-136665. doi:10.1109/ACCESS.2021.3115768
22. Ahrari, A., Elsayed, S., Sarker, R., Essam, D., & Coello, C. A. C. (2021). A Novel Parametric benchmark generator for dynamic multimodal optimization. Swarm and Evolutionary Computation, 65, 100924. doi:10.1016/j.swevo.2021.100924
23. Harrison, K. R., Elsayed, S., Garanovich, I. L., Weir, T., Galister, M., Boswell, S., . . . Sarker, R. (2021). A Hybrid Multi-Population Approach to the Project Portfolio Selection and Scheduling Problem for Future Force Design. IEEE Access, 9, 83410-83430. doi:10.1109/ACCESS.2021.3086070
24. Ahrari, A., Elsayed, S., Sarker, R., Essam, D., & Coello, C. A. C. (2021). A heredity-based adaptive variation operator for reinitialization in dynamic multi-objective problems. Applied Soft Computing, 101, 107027. doi:10.1016/j.asoc.2020.107027
25. Saad, H., Chakrabortty, R., Elsayed, S., & Ryan, M. (2021). Quantum-Inspired Genetic Algorithm for Resource-Constrained Project-Scheduling. IEEE Access. doi:10.1109/ACCESS.2021.3062790
26. Ahrari, A., Elsayed, S., Sarker, R., Essam, D., & Coello Coello, C. A. (2021). Weighted pointwise prediction method for dynamic multiobjective optimization. Information Sciences, 546, 349-367. doi:10.1016/j.ins.2020.08.015
27. Ahrari, A., Elsayed, S., Sarker, R., Essam, D., & Coello Coello, C. A. (2021). Adaptive Multilevel Prediction Method for Dynamic Multimodal Optimization. IEEE Transactions on Evolutionary Computation, 25(3), 463-477. doi:10.1109/TEVC.2021.3051172
28. Zaman, F., Elsayed, S., Sarker, R., Essam, D., & Coello Coello, C. A. (2021). An evolutionary approach for resource constrained project scheduling with uncertain changes. Computers and Operations Research, 125, 105104. doi:10.1016/j.cor.2020.105104
29. Sallam, K. M., Elsayed, S. M., Sarker, R. A., & Essam, D. L. (2020). Landscape-assisted multi-operator differential evolution for solving constrained optimization problems. Expert Systems with Applications, 162. doi:10.1016/j.eswa.2019.113033
30. El-Fiqi, H., Campbell, B., Elsayed, S., Perry, A., Singh, H. K., Hunjet, R., & Abbass, H. A. (2020). The Limits of Reactive Shepherding Approaches for Swarm Guidance. IEEE Access, 8, 214658-214671. doi:10.1109/ACCESS.2020.3037325
31. Meselhi, M. A., Elsayed, S. M., Sarker, R. A., & Essam, D. L. (2020). Contribution based co-evolutionary algorithm for large-scale optimization problems. IEEE Access, 8, 203369-203381. doi:10.1109/ACCESS.2020.3036438
32. Sallam, K., Elsayed, S., Chakrabortty, R., & Ryan, M. (2020). Evolutionary Framework with Reinforcement Learning-based Mutation Adaptation. IEEE Access. doi:10.1109/ACCESS.2020.3033593
33. Li, K., Elsayed, S. M., Sarker, R., & Essam, D. (2020). Landscape-based similarity check strategy for dynamic optimization problems. IEEE Access, 8, 178570-178586. doi:10.1109/ACCESS.2020.3026339
34. Zaman, F., Elsayed, S. M., Sarker, R. A., & Essam, D. (2020). Resource Constrained Project Scheduling with Dynamic Disruption Recovery. IEEE Access, 8, 144866-144879. doi:10.1109/ACCESS.2020.3014940
35. Zaman, F., Elsayed, S., Sarker, R., & Essam, D. (2020). Hybrid evolutionary algorithm for large-scale project scheduling problems. Computers and Industrial Engineering, 146, 106567. doi:10.1016/j.cie.2020.106567
36. Elsayed, S., Sarker, R., Essam, D., & Coello Coello, C. A. (2020). Evolutionary approach for large-Scale mine scheduling. Information Sciences, 523, 77-90. doi:10.1016/j.ins.2020.02.074
37. Harrison, K. R., Elsayed, S., Garanovich, I., Weir, T., Galister, M., Boswell, S., . . . Sarker, R. (2020). Portfolio Optimization for Defence Applications. IEEE Access, 8, 60152-60178. doi:10.1109/ACCESS.2020.2983141
38. Liu, C., Zhao, Q., Yan, B., Elsayed, S., & Sarker, R. (2019). Transfer learning-assisted multi-objective evolutionary clustering framework with decomposition for high-dimensional data. Information Sciences, 505, 440-456. doi:10.1016/j.ins.2019.07.099
39. Zaman, F., Elsayed, S., Sarker, R., Essam, D., Coello, C. A. C., & Coello Coello, C. (2019). Multi-Method based algorithm for multi-objective problems under uncertainty. Information Sciences, 481, 81-109. doi:10.1016/j.ins.2018.12.072
40. Fernandez-Rojas, R., Perry, A., Singh, H., Campbell, B., Elsayed, S., Hunjet, R., & Abbass, H. A. (2019). Contextual Awareness in Human-Advanced-Vehicle Systems: A Survey. IEEE Access, 7, 33304-33328. doi:10.1109/ACCESS.2019.2902812
41. Elsayed, S., Sarker, R., Coello, C. C., Ray, T., & Coello Coello, C. (2018). Adaptation of operators and continuous control parameters in differential evolution for constrained optimization. Soft Computing, 22(19), 6595-6616. doi:10.1007/s00500-017-2712-6
42. Liu, C., Zhao, Q., Yan, B., Elsayed, S., Ray, T., & Sarker, R. (2019). Adaptive Sorting-Based Evolutionary Algorithm for Many-Objective Optimization. IEEE Transactions on Evolutionary Computation, 23(2), 247-257. doi:10.1109/TEVC.2018.2848254
43. Sallam, K. M., Elsayed, S. M., Sarker, R. A., & Essam, D. L. (2017). Landscape-based adaptive operator selection mechanism for differential evolution. Information Sciences, 418-419, 383-404. doi:10.1016/j.ins.2017.08.028
44. Elsayed, S., Sarker, R., Ray, T., Coello, C. C., & Coello Coello, C. (2017). Consolidated optimization algorithm for resource-constrained project scheduling problems. Information Sciences, 418-419, 346-362. doi:10.1016/j.ins.2017.08.023
45. Elsayed, S., Sarker, R., & Coello Coello, C. A. (2017). Fuzzy Rule-Based Design of Evolutionary Algorithm for Optimization. IEEE Transactions on Cybernetics, 49(1), 301-314. doi:10.1109/TCYB.2017.2772849
46. Zaman, F., Elsayed, S. M., Ray, T., & Sarker, R. A. (2018). Evolutionary Algorithms for Finding Nash Equilibria in Electricity Markets. IEEE Transactions on Evolutionary Computation, 22(4), 536-549. doi:10.1109/TEVC.2017.2742502
47. Shafi, K., Elsayed, S., Sarker, R., & Ryan, M. (2017). Scenario-based multi-period program optimization for capability-based planning using evolutionary algorithms. Applied Soft Computing Journal, 56, 717-729. doi:10.1016/j.asoc.2016.07.009
48. Zaman, F., Elsayed, S. M., Ray, T., & Sarker, R. A. (2017). Co-evolutionary approach for strategic bidding in competitive electricity markets. Applied Soft Computing Journal, 51, 1-22. doi:10.1016/j.asoc.2016.11.049
49. Elsayed, S., Sarker, R., & Coello Coello, C. A. (2017). Sequence-Based Deterministic Initialization for Evolutionary Algorithms. IEEE Transactions on Cybernetics, 47(9), 2911-2923. doi:10.1109/TCYB.2016.2630722
50. Zaman, F., Elsayed, S. M., Ray, T., & Sarker, R. A. (2016). Evolutionary algorithms for power generation planning with uncertain renewable energy. Energy, 112, 408-419. doi:10.1016/j.energy.2016.06.083
51. Zaman, M. F., Elsayed., Ray., & Sarker. (2016). Configuring two-algorithm-based evolutionary approach for solving dynamic economic dispatch problems. Engineering Applications of Artificial Intelligence, 53, 105-125. doi:10.1016/j.engappai.2016.04.001
52. Elsayed, S., & Sarker, R. (2016). Differential evolution framework for big data optimization. Memetic Computing, 8(1), 17-33. doi:10.1007/s12293-015-0174-x
53. Zaman, M. F., Elsayed, S. M., Ray, T., & Sarker, R. A. (2016). Evolutionary Algorithms for Dynamic Economic Dispatch Problems. IEEE Transactions on Power Systems, 31(2), 1486-1495. doi:10.1109/TPWRS.2015.2428714
54. Elsayed, S., Sarker, R., & Essam, D. (2015). Survey of Uses of Evolutionary Computation Algorithms and Swarm Intelligence for Network Intrusion Detection. International Journal of Computational Intelligence and Applications, 14(4). doi:10.1142/S146902681550025X
55. Mabrok, M. A., Elsayed, S., & Ryan, M. J. (2015). Mathematical framework for recursive model-based system design. Nonlinear Dynamics, 84(1), 223-236. doi:10.1007/s11071-015-2418-1
56. Sayed, E., Essam, D., Sarker, R., & Elsayed, S. (2015). Decomposition-based evolutionary algorithm for large scale constrained problems. Information Sciences, 316, 457-486. doi:10.1016/j.ins.2014.10.035
57. Sarker, R., & Elsayed, S. (2015). Evolutionary algorithm for analyzing higher degree research student recruitment and completion. Cogent Engineering, 2(1). doi:10.1080/23311916.2015.1063760
58. Elsayed, S. M., Sarker, R. A., & Essam, D. L. (2015). Training and testing a self-adaptive multi-operator evolutionary algorithm for constrained optimization. Applied Soft Computing Journal, 26, 515-522. doi:10.1016/j.asoc.2014.10.011
59. Elsayed, S. M., Sarker, R. A., & Mezura-Montes, E. (2014). Self-adaptive mix of particle swarm methodologies for constrained optimization. Information Sciences, 277, 216-233. doi:10.1016/j.ins.2014.01.051
60. Elsayed, S. M., Sarker, R. A., & Essam, D. L. (2014). A self-adaptive combined strategies algorithm for constrained optimization using differential evolution. Applied Mathematics and Computation, 241, 267-282. doi:10.1016/j.amc.2014.05.018
61. Hamza, N. M., Sarker, R. A., Essam, D. L., Deb, K., & Elsayed, S. M. (2014). A constraint consensus memetic algorithm for solving constrained optimization problems. Engineering Optimization, 46(11), 1447-1464. doi:10.1080/0305215X.2013.846336
62. Elsayed, S. M., Sarker, R. A., & Essam, D. L. (2014). A new genetic algorithm for solving optimization problems. Engineering Applications of Artificial Intelligence, 27, 57-69. doi:10.1016/j.engappai.2013.09.013
63. Sarker, R. A., Elsayed, S. M., & Ray, T. (2014). Differential evolution with dynamic parameters selection for optimization problems. IEEE Transactions on Evolutionary Computation, 18(5), 689-707. doi:10.1109/TEVC.2013.2281528
64. Elsayed, S. M., Sarker, R. A., & Essam, D. L. (2013). Adaptive Configuration of evolutionary algorithms for constrained optimization. Applied Mathematics and Computation, 222, 680-711. doi:10.1016/j.amc.2013.07.068
65. Elsayed., Sarker, R., & Essam, D. (2012). On an Evolutionary Approach for Constrained Optimization Problem Solving. Applied soft computing : the official journal of the World Federation on Soft Computing (WFSC), 12(10), 3208-3227. doi:10.1016/j.asoc.2012.05.013
66. Elsayed., Sarker, R., & Essam, D. (2013). Self-adaptive differential evolution incorporating a heuristic mixing of operators. Computational Optimization and Applications, 54(3), 771-790. doi:10.1007/s10589-012-9493-8
67. Elsayed., Sarker, R., & Essam, D. (2013). An improved self-adaptive differential evolution algorithm for optimization problems. IEEE Transactions on Industrial Informatics, 9(1), 89-99. doi:10.1109/TII.2012.2198658
68. Elsayed., Sarker, R., & Essam, D. (2011). Multi-operator based evolutionary algorithms for solving constrained optimization problems. Computers and Operations Research, 38(12), 1877-1896. doi:10.1016/j.cor.2011.03.003
69. Harrison, K. R., Elsayed, S., Garanovich, I. L., Weir, T., Boswell, S. G., & Sarker, R. A. (2022). Preface. In Adaptation, Learning, and Optimization. (Vol. 26, pp. v-vi).
70. Sarker, R. A., Harrison, K. R., & Elsayed, S. M. (2022). Evolutionary Approaches for Project Portfolio Optimization: An Overview. In Adaptation, Learning, and Optimization (Vol. 26, pp. 9-35). doi:10.1007/978-3-030-88315-7_2
71. Harrison, K. R., Garanovich, I. L., Weir, T., Boswell, S. G., Elsayed, S. M., & Sarker, R. A. (2022). Evolutionary and Memetic Computing for Project Portfolio Selection and Scheduling: An Introduction. In Adaptation, Learning, and Optimization (Vol. 26, pp. 1-8). doi:10.1007/978-3-030-88315-7_1
72. Harrison, K. R., Elsayed, S. M., Garanovich, I. L., Weir, T., Boswell, S. G., & Sarker, R. A. (2022). A New Model for the Project Portfolio Selection and Scheduling Problem with Defence Capability Options. In Adaptation, Learning, and Optimization (Vol. 26, pp. 89-123). doi:10.1007/978-3-030-88315-7_5
73. Sallam, K., Elsayed, S., Sarker, R., & Essam, D. (2016). Differential evolution with landscape-based operator selection for solving numerical optimization problems. In Intelligent and Evolutionary Systems
The 20th Asia Pacific Symposium, IES 2016, Canberra, Australia, November 2016, Proceedings (pp. 371-387). Retrieved from https://link.springer.com/content/pdf/10.1007%2F978-3-319-49049-6.pdf
74. Debie, E., Elsayed, S. M., Essam, D. L., & Sarker, R. A. (2016). Investigating multi-operator differential evolution for feature selection. In T. Ray, R. Sarker, & X. Li (Eds.), Artificial Life and Computational Intelligence (Vol. 9592, pp. 273-284). Springer Nature. doi:10.1007/978-3-319-28270-1_23
75. Elsayed, S. M., & Sarker, R. (2016). Dynamic configuration of differential evolution control parameters and operators. In T. Ray, R. Sarker, & X. Li (Eds.), Artificial Life and Computational Intelligence (Vol. 9592, pp. 78-88). Springer Nature. doi:10.1007/978-3-319-28270-1_7
76. Zaman, M. F., Elsayed, S. M., Ray, T., & Sarker, R. A. (2016). A double action genetic algorithm for scheduling the wind-thermal generators. In Artificial Life and Computational Intelligence: Second Australasian Conference, Springer International Publishing (Vol. 9592, pp. 258-269). Springer Nature doi:10.1007/978-3-319-28270-1_22
77. Ali, I. M., Elsayed, S. M., Ray, T., & Sarker, R. A. (2016). A differential evolution algorithm for solving resource constrained project scheduling problems. In Artificial Life and Computational Intelligence: Second Australasian Conference, Springer International Publishing (Vol. 9592, pp. 209-220). doi:10.1007/978-3-319-28270-1_18
78. Elsayed, S., Zaman, M., & Sarker. (2015). Automated Differential Evolution for Solving Dynamic Economic Dispatch Problems. In K. Lavangnananda, S. PhonAmnuaisuk, W. Engchuan, & J. H. Chan (Eds.), Intelligent and Evolutionary Systems The 19th Asia Pacific Symposium, IES 2015, Bangkok, Thailand, November 2015, Proceedings (Vol. 5, pp. 357-372). Springer. doi:10.1007/978-3-319-27000-5_29
79. Elsayed, S., & Sarker, R. (2015). Evolving the Parameters of Differential Evolution Using Evolutionary Algorithms. In Proceedings of the 18th Asia Pacific Symposium on Intelligent and Evolutionary Systems, Volume 1 (Vol. 1, pp. 523-534). Springer Nature. doi:10.1007/978-3-319-13359-1_40
80. Elsayed., Sarker, R., & Essam, D. (2012). The influence of the number of initial feasible solutions on the performance of an evolutionary optimization algorithm. In Simulated Evolution and Learning: 9th International Conference (Vol. 7673, pp. 1-11). Springer Verlag. doi:10.1007/978-3-642-34859-4_1
81. Elsayed., Sarker, R., & Essam, D. (2010). A Three-Strategy Based Differential Evolution Algorithm for Constrained Optimization. In Neural Information Processing. Theory and Algorithms: 17th International Conference. (pp. 585-592). Berlin Heidelberg NewYork: Springer Berlin Heidelberg NewYork. doi:10.1007/978-3-642-17537-4_71
82. Elsayed., Sarker, R., & Essam, D. (2010). A Comparative Study of Different Variants of Genetic Algorithms for Constrained Optimization. In In Neural Information Processing. Theory and Algorithms: 17th International Conference (pp. 177-186). Berlin Heidelberg NewYork: Springer Berlin Heidelberg NewYork. doi:10.1007/978-3-642-17298-4_18
83. Elsayed, S., & Mabrok, M. (2024). Large-Scale Swarm Control in Cluttered Environments. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) Vol. 14453 LNAI (pp. 384-395). doi:10.1007/978-981-99-8715-3_32
84. Liu, J., Elsayed, S., Essam, D., Sarker, R., Garanovich, I. L., & Weir, T. (2024). Large-Scale Project Portfolio Selection and Scheduling Problem: A Comparison of Exact Solvers and Metaheuristics. In 2024 IEEE Congress on Evolutionary Computation, CEC 2024 - Proceedings. doi:10.1109/CEC60901.2024.10612051
85. Elsayed, S. (2024). Evolving Question Design to Mitigate the Impact of Generative AI Text Tools on Education. In Proceedings of International Conference on Computers and Industrial Engineering, CIE Vol. 2024-December (pp. 293-302).
86. Mara, S. T. W., Sarker, R., Essam, D., & Elsayed, S. (2024). Evolutionary Approach for a Green Logistics System with Drone-as-a-Service Providers. In Proceedings of International Conference on Computers and Industrial Engineering, CIE Vol. 2024-December (pp. 190-199).
87. Elfeky, E., Sherman, G., Elsayed, S., Shovon, M. H. I., Lodge, R., Campbell, B., . . . Sarker, R. (2024). Differential Evolution Algorithm for Battlefield Surveillance Sensor Placement. In 2024 IEEE Congress on Evolutionary Computation, CEC 2024 - Proceedings. doi:10.1109/CEC60901.2024.10611836
88. Hamza, N., Sarker, R., Essam, D., & Elsayed, S. (2024). Constraint Consensus for Solving Large-scale Constrained Optimization Problems. In 2024 IEEE Congress on Evolutionary Computation, CEC 2024 - Proceedings. doi:10.1109/CEC60901.2024.10611820
89. Meselhi, M., Hamza, N., Elsayed, S., Essam, D., & Sarker, R. (2024). An Evolutionary Framework for Large-Scale Constrained Optimization. In Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics (pp. 3751-3756). doi:10.1109/SMC54092.2024.10831958
90. Mara, S. T. W., Elsayed, S., Essam, D., & Sarker, R. (2023). Vehicle Routing Problem for an Integrated Electric Vehicles and Drones System. In Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST Vol. 486 LNICST (pp. 197-214). doi:10.1007/978-3-031-30855-0_14
91. Elsayed, S. (2023). Towards Mitigating ChatGPT's Negative Impact on Education: Optimizing Question Design Through Bloom's Taxonomy. In 2023 IEEE Region 10 Symposium, TENSYMP 2023. doi:10.1109/TENSYMP55890.2023.10223662
92. Paul, D., Mo, H., Elsayed, S., & Chakrabortty, R. K. (2023). Predicting Energy Consumption of Battery-Operated Electric Vehicles: A Comparative Performance Assessment. In 2023 IEEE International Conference on Industrial Engineering and Engineering Management, IEEM 2023 (pp. 1032-1036). doi:10.1109/IEEM58616.2023.10406558
93. Nguyen, D. T., Singh, H., Elsayed, S., Hunjet, R., & Abbass, H. A. (2023). Multi-agent Knowledge Transfer in a Society of Interpretable Neural Network Minds for Dynamic Context Formation in Swarm Shepherding. In Proceedings of the International Joint Conference on Neural Networks Vol. 2023-June. doi:10.1109/IJCNN54540.2023.10191371
94. Li, K., Elsayed, S., Sarker, R., & Essam, D. (2023). Landscape-Based Genetic Algorithm with Quantum Entanglement for Dynamic Optimization Problems. In International Conference on Software, Knowledge Information, Industrial Management and Applications, SKIMA (pp. 187-192). doi:10.1109/SKIMA59232.2023.10387354
95. Elsayed, S., & Hassanin, M. (2023). Improved Shepherding Model for Large-scale Swarm Control. In International Conference on Smart Computing and Application, ICSCA 2023. doi:10.1109/ICSCA57840.2023.10087385
96. Windras Mara, S. T., Sarker, R., Essam, D., & Elsayed, S. (2023). Electric Vehicle-Drone Routing Problem with Optional Drone Availability. In IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC (pp. 827-832). doi:10.1109/ITSC57777.2023.10422505
97. Liu, J., Singh, H., Elsayed, S., Hunjet, R., & Abbass, H. A. (2023). Effective Robotic Swarm Shepherding in the Presence of Obstacles. In 2023 IEEE Congress on Evolutionary Computation, CEC 2023. doi:10.1109/CEC53210.2023.10254040
98. Liu, J., Singh, H., Elsayed, S., Hunjet, R., & Abbass, H. A. (2023). Distance Constrained Robotic Swarm Shepherding Based on Two-Phase Ant Colony Optimisation. In Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics (pp. 5224-5230). doi:10.1109/SMC53992.2023.10394448
99. Elfeky, E., Cochrane, M., Marsh, L., Elsayed, S., Sims, B., Crase, S., . . . Sarker, R. (2022). Coevolutionary Algorithm for Evolving Competitive Strategies in the Weapon Target Assignment Problem. In ACM International Conference Proceeding Series (pp. 9-18). doi:10.1145/3533050.3533052
100. Hamza, N., Elsayed, S., Sarker, R., & Essam, D. (2022). Solving constrained problems with dynamic objective functions. In 2022 IEEE Congress on Evolutionary Computation, CEC 2022 - Conference Proceedings. doi:10.1109/CEC55065.2022.9870354
101. Mohamed, R. E., Elsayed, S., Hunjet, R., & Abbass, H. (2022). Reinforcement Learning for Solving Communication Problems in Shepherding. In Proceedings of the 2022 IEEE Symposium Series on Computational Intelligence, SSCI 2022 (pp. 1626-1635). doi:10.1109/SSCI51031.2022.10022160
102. Hamza, N., Elsayed, S., Sarker, R., & Essam, D. (2022). Evolutionary Constrained Optimization with Dynamic Changes and Uncertainty in the Objective Function. In International Conference on Software, Knowledge Information, Industrial Management and Applications, SKIMA Vol. 2022-December (pp. 54-60). Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/SKIMA57145.2022.10029469
103. Elfeky, E., Cochrane, M., Crase, S., Elsayed, S., Sims, B., Essam, D., & Sarker, R. (2022). Coevolution with Danger Zone Levels Strategy for the Weapon Target Assignment Problem. In Proceedings of the 2022 IEEE Symposium Series on Computational Intelligence, SSCI 2022 (pp. 596-603). doi:10.1109/SSCI51031.2022.10022268
104. Harrison, K. R., Elsayed, S. M., Weir, T., Garanovich, I. L., Boswell, S. G., & Sarker, R. A. (2022). A Novel Multi-Objective Project Portfolio Selection and Scheduling Problem. In Proceedings of the 2022 IEEE Symposium Series on Computational Intelligence, SSCI 2022 (pp. 480-487). doi:10.1109/SSCI51031.2022.10022287
105. Islam, T., Elsayed, S., Essam, D., & Sarker, R. (2022). A Comparative Study of Different Forecasting Models for Energy Demand Forecasting. In Smart Innovation, Systems and Technologies Vol. 281 (pp. 553-564). Tekkali, India. doi:10.1007/978-981-16-9447-9_42
106. Saad, H., Chakrabortty, R., & Elsayed, S. (2021). Quantum-Inspired Differential Evolution for Resource-Constrained Project-Scheduling: Preliminary study. In 2021 IEEE Congress on Evolutionary Computation. Krakow, Poland: IEEE. doi:10.1109/CEC45853.2021.9504970
107. Harrison, K. R., Elsayed, S., Sarker, R. A., Garanovich, I. L., Weir, T., & Boswell, S. G. (2021). Project portfolio selection with defense capability options. In GECCO 2021 Companion - Proceedings of the 2021 Genetic and Evolutionary Computation Conference Companion (pp. 1825-1826). Association for Computing Machinery (ACM). doi:10.1145/3449726.3463126
108. Meselhi, M. A., Elsayed, S. M., Sarker, R. A., & Essam, D. L. (2021). Parallel Evolutionary Algorithm for EEG Optimization Problems. In 2021 IEEE Congress on Evolutionary Computation, CEC 2021 - Proceedings (pp. 2577-2584). doi:10.1109/CEC45853.2021.9504925
109. Ahrari, A., Elsayed, S., Sarker, R., Essam, D., & Coello Coello, C. A. (2021). Modular Analysis and Development of a Genetic Algorithm with Standardized Representation for Resource-Constrained Project Scheduling. In 2021 IEEE Congress on Evolutionary Computation, CEC 2021 - Proceedings Vol. 00 (pp. 612-619). ELECTR NETWORK: Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/CEC45853.2021.9504950
110. Mohamed, R. E., Hunjet, R., Elsayed, S., & Abbass, H. (2021). Deep Learning for Noisy Communication System. In 2021 31st International Telecommunication Networks and Applications Conference, ITNAC 2021 (pp. 40-47). doi:10.1109/ITNAC53136.2021.9652171
111. Debie, E., Singh, H., Elsayed, S., Perry, A., Hunjet, R., & Abbass, H. (2021). A Neuro-Evolution Approach to Shepherding Swarm Guidance in the Face of Uncertainty. In Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics (pp. 2634-2641). doi:10.1109/SMC52423.2021.9659082
112. Mohamed, R. E., Elsayed, S., Hunjet, R., & Abbass, H. (2021). A Graph-based Approach for Shepherding Swarms with Limited Sensing Range. In 2021 IEEE Congress on Evolutionary Computation, CEC 2021 - Proceedings (pp. 2315-2322). doi:10.1109/CEC45853.2021.9504706
113. Ahrari, A., Elsayed, S., Sarker, R., Essam, D., & Coello, C. A. C. (2020). Towards a More Practically Sound Formulation of Dynamic Problems and Performance Evaluation of Dynamic Search Methods. In 2020 IEEE Symposium Series on Computational Intelligence, SSCI 2020 Vol. 00 (pp. 1387-1394). ELECTR NETWORK: Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/SSCI47803.2020.9308464
114. Elsayed, S., Singh, H., Debie, E., Perry, A., Campbell, B., Hunjel, R., & Abbass, H. (2020). Path Planning for Shepherding a Swarm in a Cluttered Environment using Differential Evolution. In 2020 IEEE Symposium Series on Computational Intelligence (SSCI 2020) Vol. 00 (pp. 2194-2201). Due to COVID-19 restrictions, the event was held virtually with the broadcast from Canberra, Australia.: IEEE. doi:10.1109/SSCI47803.2020.9308572
115. Harrison, K. R., Elsayed, S., Weir, T., Garanovich, I. L., Taylor, R., & Sarker, R. (2020). An Exploration of Meta-Heuristic Approaches for the Project Portfolio Selection and Scheduling Problem in a Defence Context. In 2020 IEEE Symposium Series on Computational Intelligence, SSCI 2020 Vol. 00 (pp. 1395-1402). ELECTR NETWORK: Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/SSCI47803.2020.9308608
116. Harrison, K. R., Elsayed, S., Weir, T., Garanovich, I. L., Galister, M., Boswell, S., . . . Sarker, R. (2020). Multi-Period Project Selection and Scheduling for Defence Capability-Based Planning. In Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics Vol. 2020-October (pp. 4044-4050). ELECTR NETWORK: Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/SMC42975.2020.9283334
117. Sallam, K., Elsayed, S., Chakrabortty, R., & Ryan, M. (2020). Multi-Operator Differential Evolution Algorithm for Solving Real-World Constrained Optimization Problems. In IEEE Congress on Evolutionary Computation (CEC). Glasgow, United Kingdom. doi:10.1109/CEC48606.2020.9185722.
118. Sallam, K., Elsayed, S., Chakrabortty, R., & Ryan, M. (2020). Improved Multi-operator Differential Evolution Algorithm for Solving Unconstrained Problems. In 2020 IEEE Congress on Evolutionary Computation (CEC) (pp. 1-8). Glasgow, United Kingdom: IEEE. doi:10.1109/CEC48606.2020.9185577
119. El-Fiqi, H., Campbell, B., Elsayed, S., Perry, A., Singh, H. K., Hunjet, R., & Abbass, H. (2020). A preliminary study towards an improved shepherding model. In GECCO 2020 Companion - Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion (pp. 75-76). doi:10.1145/3377929.3390067
120. Sallam, K. M., Elsayed, S. M., Chakrabortty, R. K., & Ryan, M. J. (2020). Multi-Operator Differential Evolution Algorithm for Solving Real-World Constrained Optimization Problems. In 2020 IEEE Congress on Evolutionary Computation, CEC 2020 - Conference Proceedings. doi:10.1109/CEC48606.2020.9185722
121. Elsayed, S., Sarker, R., Hamza, N., Coello, C. A. C., & Mezura-Montes, E. (2020). Enhancing Evolutionary Algorithms by Efficient Population Initialization for Constrained Problems. In 2020 IEEE Congress on Evolutionary Computation, CEC 2020 - Conference Proceedings. doi:10.1109/CEC48606.2020.9185509
122. Ahrari, A., Elsayed, S., Sarker, R., & Essam, D. (2019). A New Prediction Approach for Dynamic Multiobjective Optimization. In 2019 IEEE Congress on Evolutionary Computation, CEC 2019 - Proceedings Vol. 00 (pp. 2268-2275). Wellington, New Zealand, New Zealand: IEEE Xplore. doi:10.1109/CEC.2019.8790215
123. Li, K., Elsayed, S., Sarker, R., & Essam, D. (2019). Quantum Differential Evolution: An Investigation. In 2019 IEEE Congress on Evolutionary Computation, CEC 2019 - Proceedings Vol. 00 (pp. 3022-3029). NEW ZEALAND, Wellington: Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/CEC.2019.8790303
124. Singh, H., Campbell, B., Elsayed, S., Perry, A., Hunjet, R., & Abbass, H. (2019). Modulation of Force Vectors for Effective Shepherding of a Swarm: A Bi-Objective Approach. In 2019 IEEE Congress on Evolutionary Computation, CEC 2019 - Proceedings (pp. 2941-2948). doi:10.1109/CEC.2019.8790228
125. Zaman, F., Elsayed, S., Sarker, R., Essam, D., & Coello Coello, C. A. (2019). Evolutionary Algorithm for Project Scheduling under Irregular Resource Changes. In 2019 IEEE Congress on Evolutionary Computation, CEC 2019 - Proceedings Vol. 00 (pp. 403-410). NEW ZEALAND, Wellington: Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/CEC.2019.8790170
126. Zaman, F., Elsayed, S., Sarker, R., & Essam, D. (2018). A New Hybrid Approach for the Multimode Resource-Constrained Project Scheduling Problems. In Proceedings of International Conference on Computers and Industrial Engineering, CIE Vol. 2018-December. The University of Auckland, New Zealand. doi:10.26190/unsworks/27002
127. Zaman, F., Elsayed, S., Sarker, R., & Essam, D. (2018). Scenario-Based Solution Approach for Uncertain Resource Constrained Scheduling Problems. In 2018 IEEE Congress on Evolutionary Computation, CEC 2018 - Proceedings Vol. 00 (pp. 1-8). BRAZIL, Rio de Janeiro: Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/CEC.2018.8477756
128. Sallam, K., Elsayed, S., Sarker, R., & Essam, D. (2018). Landscape-Based Differential Evolution for Constrained Optimization Problems. In 2018 IEEE Congress on Evolutionary Computation, CEC 2018 - Proceedings. doi:10.1109/CEC.2018.8477900
129. Sallam, K. M., Elsayed, S. M., Sarker, R. A., & Essam, D. L. (2018). Improved United Multi-Operator Algorithm for Solving Optimization Problems. In 2018 IEEE Congress on Evolutionary Computation, CEC 2018 - Proceedings. doi:10.1109/CEC.2018.8477759
130. Liu, C., Zhao, Q., Yan, B., Elsayed, S., & Sarker, R. (2018). An Improved Multi-Objective Evolutionary Approach for Clustering High-Dimensional Data. In A. Sill, & J. Spillner (Eds.), Proceedings - 5th IEEE/ACM International Conference on Big Data Computing, Applications and Technologies, BDCAT 2018 Vol. 21 (pp. 184-190). SWITZERLAND, Zurich: Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/BDCAT.2018.00030
131. Meselhi, M. A., Elsayed, S. M., Essam, D. L., & Sarker, R. A. (2017). Fast differential evolution for big optimization. In International Conference on Software, Knowledge Information, Industrial Management and Applications, SKIMA Vol. 2017-December. doi:10.1109/SKIMA.2017.8294137
132. Meselhi, M. A., Sarker, R. A., Essam, D. L., & Elsayed, S. M. (2018). Enhanced differential grouping for large scale optimization. In IJCCI 2018 - Proceedings of the 10th International Joint Conference on Computational Intelligence Vol. 1 (pp. 217-224). Seville, Spain: SciTePress. doi:10.5220/0006938902170224
133. Meselhi, M., Sarker, R., Essam, D., & Elsayed, S. (2018). Decomposition of overlapping optimization functions. In Proceedings of International Conference on Computers and Industrial Engineering, CIE Vol. 2018-December (pp. 9 pages). Auckland, New Zealand. doi:10.26190/unsworks/27256
134. Sallam, K. M., Elsayed, S. M., Sarker, R. A., & Essam, D. L. (2017). Multi-method based orthogonal experimental design algorithm for solving CEC2017 competition problems. In 2017 IEEE Congress on Evolutionary Computation, CEC 2017 - Proceedings (pp. 1350-1357). San Sebastian, Spain: Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/CEC.2017.7969461
135. Sallam, K. M., Elsayed, S. M., Sarker, R. A., & Essam, D. L. (2017). Two-phase differential evolution framework for solving optimization problems. In 2016 IEEE Symposium Series on Computational Intelligence, SSCI 2016 Vol. 13 (pp. 1-8). Athens, Greece: Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/SSCI.2016.7850258
136. Aguilar-Justo, A. E., Mezura-Montes, E., Elsayed, S. M., & Sarker, R. A. (2017). Decomposition of large-scale constrained problems using a genetic-based search. In 2016 IEEE International Autumn Meeting on Power, Electronics and Computing, ROPEC 2016. Ixtapa, Mexico. doi:10.1109/ROPEC.2016.7830614
137. Zaman, M. F., Elsayed, S. A. B. E. R., Ray., & Sarker. (2016). An Evolutionary Framework for Bi-objective Dynamic Economic and Environmental Dispatch Problems. In Leu, Singh, & Elsayed (Eds.), Proceedings in Adaptation, Learning and Optimization Vol. 8 (pp. 495-508). AUSTRALIA, Univ New S Wales, Canberra Campus, Australian Def Force Acad, Canberra: Springer. doi:10.1007/978-3-319-49049-6_36
138. Elsayed, S., Hamza, N., & Sarker, R. (2016). Testing united multi-operator evolutionary algorithms-II on single objective optimization problems. In 2016 IEEE Congress on Evolutionary Computation, CEC 2016 Vol. 3 (pp. 2966-2973). CANADA, Vancouver: Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/CEC.2016.7744164
139. Elsayed, S., Sarker, R., Coello, C. C., & Coello Coello, C. (2016). Enhanced multi-operator differential evolution for constrained optimization. In 2016 IEEE Congress on Evolutionary Computation, CEC 2016 (pp. 4191-4198). CANADA, Vancouver: Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/CEC.2016.7744322
140. Zaman, M. F., Elsayed, S., Ray, T., & Sarker. (2016). A Co-evolutionary approach for optimal bidding strategy of multiple electricity suppliers. In Evolutionary Computation (CEC), 2016 IEEE Congress on. Vancouver, Canada. doi:10.1109/CEC.2016.7744234
141. Zaman, M. F., Elsayed, S., Ray, T., & Sarker, R. (2015). An Evolutionary Approach for Scheduling Solar-thermal Power Generation System. In International Conference on Computers & Industrial Engineering (CIE). Metz, France. doi:10.13140/RG.2.1.1577.5129
142. Sallam., Sarker., Essam., & Elsayed, S. M. (2015). Neurodynamic differential evolution algorithm and solving CEC2015 competition problems. In IEEE Congress on Evolutionary Computation, Vol. 14 (pp. 1033-1040). Sendai, Japan: Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/CEC.2015.7257003
143. Ali, I. M., Elsayed, S. A. B. E. R., Ray, T., & Sarker, R. (2015). Memetic Algorithm for solving Resource Constrained Project Scheduling Problems. In Evolutionary Computation. Sendai: Massachusetts Institute of Technology Press (MIT Press): STM Titles. doi:10.1109/CEC.2015.7257231
144. Elsayed, S. M., Sarker, R., & Slay. (2015). Evaluating the performance of a differential evolution algorithm in anomaly detection. In 2015 IEEE Congress on Evolutionary Computation, CEC 2015 - Proceedings Vol. 9 (pp. 2490-2497). Sendai, Japan: Institute of Electrical and Electronics Engineers (IEEE). doi:10.1109/CEC.2015.7257194
145. elsayed., sarker., & Elsayed, S. M. (2015). An Adaptive Configuration of Differential Evolution Algorithms for Big Data. In 2015 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC) (pp. 695-702). Sendai, Japan: IEEE.
146. Elsayed, S. M., Sarker, R. A., & Essam, D. L. (2014). United multi-operator evolutionary algorithms. In Proceedings of the 2014 IEEE Congress on Evolutionary Computation, CEC 2014 (pp. 1006-1013). doi:10.1109/CEC.2014.6900237
147. Elsayed, S. M., Sarker, R. A., Essam, D. L., & Hamza, N. M. (2014). Testing united multi-operator evolutionary algorithms on the CEC2014 real-parameter numerical optimization. In Proceedings of the 2014 IEEE Congress on Evolutionary Computation, CEC 2014 (pp. 1650-1657). doi:10.1109/CEC.2014.6900308
148. Greenwood, G. W., Elsayed, S., Sarker, R., & Abbass, H. A. (2014). Online generation of trajectories for autonomous vehicles using a multi-agent system. In Proceedings of the 2014 IEEE Congress on Evolutionary Computation, CEC 2014 (pp. 1218-1224). doi:10.1109/CEC.2014.6900345
149. Elsayed, S. M., Ray, T., & Sarker, R. A. (2014). A surrogate-assisted differential evolution algorithm with dynamic parameters selection for solving expensive optimization problems. In Proceedings of the 2014 IEEE Congress on Evolutionary Computation, CEC 2014 (pp. 1062-1068). doi:10.1109/CEC.2014.6900351
150. Sayed, E., Essam, D., Sarker, R., & Elsayed, S. (2014). A decomposition-based algorithm for dynamic economic dispatch problems. In Proceedings of the 2014 IEEE Congress on Evolutionary Computation, CEC 2014 (pp. 1898-1905). doi:10.1109/CEC.2014.6900459
151. Elsayed, S. M., & Sarker, R. A. (2013). Differential Evolution with automatic population injection scheme for constrained problems. In Proceedings of the 2013 IEEE Symposium on Differential Evolution, SDE 2013 - 2013 IEEE Symposium Series on Computational Intelligence, SSCI 2013 (pp. 112-118). doi:10.1109/SDE.2013.6601450
152. Elsayed., Sarker, R., & Mezura-montes, E. (2013). Particle Swarm Optimizer for Constrained Optimization. In 2013 IEEE Congress on Evolutionary Computation (pp. 1703-1711). Cancún, México. doi:10.1109/CEC.2013.6557896
153. Elsayed., Sarker, R., & Ray, T. (2013). Differential Evolution with Automatic Parameter Configuration for Solving the CEC2013 Competition on Real-Parameter Optimization. In 2013 IEEE Congress on Evolutionary Computation (pp. 1932-1937). Cancún, México. doi:10.1109/CEC.2013.6557795
154. Elsayed., & Sarker, R. (2013). Differential Evolution with Automatic Population Injection Scheme. In 2013 IEEE Symposium on Differential Evolution (SDE 2013) (pp. 1-8). Singapore: IEEE.
155. Elsayed., Sarker, R., & Essam, D. (2013). A Genetic Algorithm for Solving the CEC'2013 Competition Problems on Real-Parameter Optimization. In 2013 IEEE Congress on Evolutionary Computation (pp. 356-360). Cancún, México. Retrieved from http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6557591
156. Elsayed., Sarker, R., & Ray, T. (2012). Parameters adaptation in differential evolution. In Evolutionary Computation (CEC), 2012 IEEE Congress on (pp. 1-8). USA: IEEE Press. doi:10.1109/CEC.2012.6252931
157. Elsayed., Sarker, R., & Essam, D. (2012). Memetic multi-topology particle swarm optimizer for constrained optimization. In Evolutionary Computation (CEC), 2012 IEEE Congress on (pp. 1-8). USA: IEEE Press. doi:10.1109/CEC.2012.6256110
158. Elsayed., Sarker, R., & Essam, D. (2011). Improved genetic algorithm for constrained optimization. In Computer Engineering & Systems (ICCES), 2011 International Conference on (pp. 111-115). USA: IEEE Press. doi:10.1109/ICCES.2011.6141022
159. Elsayed., Sarker, R., & Essam, D. (2011). Integrated strategies differential evolution algorithm with a local search for constrained optimization. In 2011 IEEE Congress of Evolutionary Computation (pp. 2618-2625). New Orleans, LA: IEEE. doi:10.1109/CEC.2011.5949945
160. Elsayed., Sarker, R., & Essam, D. (2011). GA with a new multi-parent crossover for solving IEEE-CEC2011 competition problems. In 2011 IEEE Congress of Evolutionary Computation (pp. 1034-1040). New Orleans, LA: IEEE. doi:10.1109/CEC.2011.5949731
161. Elsayed., Sarker, R., & Essam, D. (2011). GA with a new multi-parent crossover for constrained optimization. In 2011 IEEE Congress of Evolutionary Computation (pp. 857-864). New Orleans, LA: IEEE. doi:10.1109/CEC.2011.5949708
162. Elsayed., Sarker, R., & Essam, D. (2011). Differential evolution with multiple strategies for solving CEC2011 real-world numerical optimization problems. In 2011 IEEE Congress of Evolutionary Computation (pp. 1041-1048). New Orleans, LA: IEEE. doi:10.1109/CEC.2011.5949732
163. Hamza, N. M., Elsayed., Essam, D., & Sarker, R. (2011). Differential evolution combined with constraint consensus for constrained optimization. In 2011 IEEE Congress of Evolutionary Computation (pp. 865-872). New Orleans, LA: IEEE. doi:10.1109/CEC.2011.5949709