import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
data = pd.read_csv("/home/umesh/Desktop/icfoss/bcdata.csv")
data.info()
data.drop(['Unnamed: 32'], axis=1, inplace=True)
data.head()
data.drop(['id'], axis=1, inplace=True)
data.diagnosis.value_counts()
data.diagnosis = [1 if each == "M" else 0 for each in data.diagnosis]
y = data.diagnosis.values
x = data.drop(['diagnosis'], axis=1)
x = (x - np.min(x) ) / ( np.max(x) - np.min(x) ).values
f, axis = plt.subplots(figsize = (18,18))
sns.heatmap(data.corr(), annot = False, linewidths = .4)
plt.show()
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size = 0.3 , random_state = 1)
print x_train
print x_test
print y_train
print y_test
# svm
from sklearn.svm import SVC
svm = SVC(random_state = 1)
svm.fit(x_train,y_train)
print("accuracy of svm algo:",svm.score(x_test,y_test))
# confusion matrix
y_pred = svm.predict(x_test)
y_true = y_test
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_true,y_pred)
print cm
import seaborn as sns
sns.heatmap(cm, annot = True, linewidths = 0.5 , linecolor = "yellow", fmt =".0f")
plt.xlabel("y_true")
plt.ylabel("y_pred")
plt.show()