Group members are in bold.
(updated 28 August 2025)
Wilson-Kemsley, S., P. Nowack, P. Ceppi (submitted). Recent cloud controlling factor analyses indicate higher climate sensitivity, Geophys Res Lett
Guillaume-Castel, R., P. Ceppi, J. Dorrington, and B. Meyssignac (submitted). ENSO diversity explains interannual variability of the pattern effect, Geophys Res Lett
Williams, R. G., P. Goodwin, P. Ceppi, C. Jones, and A. MacDougall (submitted). A normalised framework for the Zero Emissions Commitment revealing competing thermal and carbon controls, Biogeosciences
Breul, P., P. Ceppi, I. R. Simpson, and T. Woollings (submitted). Seasonal and jet stream changes and drivers, Nat Rev Earth Environ
Auestad, H., A. Shibu, P. Ceppi, and T. Woollings (in press). The latent heating feedback on the mid-latitude circulation, Geophys Res Lett
Breul, P., P. Ceppi, and P. Nowack (in press). The importance of stratocumulus clouds for projected warming patterns and circulation changes, Atmos Chem Phys
Kawaguchi, K. and P. Ceppi (2025). Responses to lower-tropospheric stability dominate intermodel differences in the historical pattern effect, Geophys Res Lett
Goodwin, P., R. G. Williams, P. Ceppi, and B. B. Cael (2025). Climate feedbacks derived from spatial contrasts in recent climatology, J Geophys Res Atmos, doi: 10.1029/2024JD043186
Mauritsen, T., Y. Tsushima, B. Meyssignac, N. G. Loeb, M. Hakuba, P. Pilewskie, et al. (2025). Earth's energy imbalance more than doubled in recent decades, AGU Advances, doi: 10.1029/2024AV001636
Wilson-Kemsley, S., P. Nowack, P. Ceppi (2025). Climate models underestimate global decreases in high-cloud amount with warming, Geophys Res Lett, doi: 10.1029/2024GL113316
Lambert, F. H., R. P. Allan, A. Behrangi, M. P. Byrne, P. Ceppi, R. Chadwick, P. J. Durack, G. Fosser, H. J. Fowler, P. Greve, T. Lee, H. Mutton, P. A. O'Gorman, J. M. Osborne, A. G. Pendergrass, J. T. Reager, P. Stier, A. L. S. Swann, A. Todd, S. M. Vicente-Serrano, and G. L. Stephens (2025). Future changes in the global hydrological cycle and their implications for societies, WIREs Clim Change, doi: 10.1002/wcc.70005
Kim, H., S. Kang, A. Pendergrass, F. Lehner, Y. Shin, P. Ceppi, and S.-W. Yeh, S.-Y. Song (2025). Wetter East Asia and Western United States with projected delayed Southern Ocean warming, Nat Geosci, doi: 10.1038/s41561-025-01669-5
Lee, D., S. N. Sparrow, M. Willeit, P. Ceppi, and M. R. Allen (2025). Quantifying CO2 and non-CO2 contributions to climate change under 1.5°C and 2°C adaptive emission scenarios, Earth's Future, doi: 10.1029/2024EF005580
Simpson, I. R., T. Shaw, P. Ceppi, A. Clement, E. Fischer, K. Grise, A. Pendergrass, J. Screen, R. Jnglin Wills, T. Woollings, R. Blackport, J. Kang, and S. Po-Chedley (2025). Confronting Earth System Model trends with observations: A new era in simulating and predicting climate, Science Advances, doi: 10.1126/sciadv.adt8035
Ceppi, P., T. A. Myers, P. Nowack, C. J. Wall, and M. D. Zelinka (2024). Implications of a pervasive climate model bias for low-cloud feedback, Geophys Res Lett, doi: 10.1029/2024GL110525
Quaas, J., T. Andrews, N. Bellouin, K. Block, O. Boucher, P. Ceppi, G. Dagan, S. Doktorowski, H. M. Eichholz, P. Forster, T. Goren, E. Gryspeerdt, Ø. Hodnebrog, H. Jia, R. Kramer, C. Lange, A. C. Maycock, J. Mülmenstädt, G. Myhre, F. M. O'Connor, R. Pincus, B. H. Samset, F. Senf, K. P. Shine, C. Smith, C. W. Stjern, T. Takemura, V. Toll, and C. J. Wall (2024). Adjustments to climate perturbations – mechanisms, implications, observational constraints, AGU Advances, doi: 10.1029/2023AV001144
Auestad, H., C. Spensberger, A. Marcheggiani, P. Ceppi, T. Spengler, and T. Woollings (2024). Spatio-temporal filtering of jets obscures the reinforcement of baroclinicity by latent heating, Weather Clim Dynam, doi: 10.5194/wcd-5-1269-2024
Williams, R. G., A. J. S. Meijers, V. Roussenov, A. Katavouta, P. Ceppi, J. P. Rosser, and P. Salvi (2024). Asymmetries in the Southern Ocean contribution to global heat and carbon uptake, Nat Clim Chang, doi: 10.1038/s41558-024-02066-3
Wilson-Kemsley, S., P. Ceppi, H. Andersen, J. Cermak, P. Stier, and P. Nowack (2024). A systematic evaluation of high-cloud controlling factors, Atmos Chem Phys, doi: 10.5194/acp-24-8295-2024
Kuhlbrodt, T., R. Swaminathan, P. Ceppi, and T. Wilder (2024). A glimpse into the future: The 2023 ocean temperature and sea-ice extremes in the context of longer-term climate change, BAMS, doi: 10.1175/BAMS-D-23-0209.1
Palazzo Corner, S., M. Siegert, P. Ceppi, B. Fox-Kemper, T. Frölicher, A. Gallego-Sala, J. Haigh, G. Hegerl, C. D. Jones, R. Knutti, C. Koven, A. MacDougall, M. Meinshausen, Z. Nicholls, J.-B. Sallée, B. Sanderson, R. Séférian, M. Turetsky, R. G. Williams, S. Zaehle, and J. Rogelj (2023). The zero emissions commitment and climate stabilisation, Frontiers in Science, doi: 10.3389/fsci.2023.1170744
Rugenstein, M., M. Zelinka, K. B. Karnauskas, P. Ceppi, and T. Andrews (2023). Patterns of surface warming matter for climate sensitivity, Eos, doi: 10.1029/2023EO230411
Salvi, P., J. M. Gregory, and P. Ceppi (2023). Time-evolving radiative feedbacks in the historical period, J Geophys Res Atmos, doi: 10.1029/2023JD038984
Kang, S. M., P. Ceppi, Y. Yu, and I.-S. Kang (2023). Recent global climate feedback controlled by Southern Ocean cooling, Nat Geosci, doi: 10.1038/s41561-023-01256-6
Kang, S. M., Y. Yu, C. Deser, X. Zhang, I.-S. Kang, S.-S. Lee, K. B. Rodgers, and P. Ceppi (2023). Global Impacts of Recent Southern Ocean Cooling, PNAS, doi: 10.1073/pnas.2300881120
Nowack, P., P. Ceppi, W. Ball, G. Chiodo, S. Davis, M. A. Diallo, B. Hassler, J. Keeble, and M. Joshi (2023), Response of stratospheric water vapour to warming constrained by satellite observations, Nat Geosci, doi: 10.1038/s41561-023-01183-6
Williams, R. G., P. Ceppi, V. Roussenov, A. Katavouta, and A. J. S. Meijers (2023). The role of the Southern Ocean in the global climate response to carbon emissions, Phil Trans R Soc A, doi: 10.1098/rsta.2022.0062
Cael, B. B., J. Bloch-Johnson, P. Ceppi, H.-B. Fredriksen, P. Goodwin, J. M. Gregory, C. J. Smith, and R. G. Williams (2023). Energy budget diagnosis of changing climate feedback, Science Advances, doi: 10.1126/sciadv.adf9302
Breul, P., P. Ceppi, and T. G. Shepherd (2023). Revisiting the wintertime emergent constraint of the Southern Hemispheric midlatitude jet response to global warming, Weather Clim Dynam, doi: 10.5194/wcd-4-39-2023
Breul, P., P. Ceppi, and T. G. Shepherd (2022). Relationship between Southern Hemispheric jet variability and forced response: the role of the stratosphere, Weather Clim Dynam, 3: 645–658, doi: 10.5194/wcd-3-645-2022.
Salvi, P., P. Ceppi, and J. M. Gregory (2022). Interpreting Differences in Radiative Feedbacks From Aerosols Versus Greenhouse Gases, Geophys Res Lett, 49: e2022GL097766, doi: 10.1029/2022GL097766
Ceppi, P. and S. Fueglistaler (2021). The El Niño–Southern Oscillation Pattern Effect, Geophys Res Lett, 48: e2021GL095261, doi: 10.1029/2021GL095261
Salvi, P., P. Ceppi, and J. M. Gregory (2021). Interpreting the Dependence of Cloud-Radiative Adjustment on Forcing Agent, Geophys Res Lett, 48: e2021GL093616, doi: 10.1029/2021GL093616
Ceppi, P. and P. Nowack (2021). Observational evidence that cloud feedback amplifies global warming, PNAS, 118: e2026290118, doi: 10.1073/pnas.2026290118
See the related Carbon Brief explainer and Scientific American news article
Chen, Y.-J., Y.-T. Hwang, and P. Ceppi (2021). The impacts of cloud-radiative changes on poleward atmospheric and oceanic energy transport in a warmer climate, J Climate, doi: 10.1175/JCLI-D-20-0949.1
Zappa, G., P. Ceppi, and T. G. Shepherd (2021). Eurasian cooling in response to Arctic sea-ice loss is not proved by maximum covariance analysis, Nat Clim Chang, 11: 106–108, doi: 10.1038/s41558-020-00982-8
Voigt, A., N. Albern, P. Ceppi, K. Grise, Y. Li, and B. Medeiros (2021). Clouds, radiation, and atmospheric circulation in the present‐day climate and under climate change, WIREs Clim Change, 12:e694, doi: 10.1002/wcc.694
Williams, R. G., P. Ceppi, and A. Katavouta (2020). Controls of the Transient Climate Response to Emissions: effects of physical feedbacks, heat uptake and carbon cycling, Environ Res Lett, 15: 0940c1, doi: 10.1088/1748-9326/ab97c9
Curtis, P. E., P. Ceppi, and G. Zappa (2020). Role of the Mean State for the Southern Hemispheric Jet Stream Response to CO2 Forcing in CMIP6 models, Environ Res Lett, 15: 064011, doi: 10.1088/1748-9326/ab8331
Zappa, G., P. Ceppi, and T. G. Shepherd (2020). Time-evolving sea surface warming patterns modulate the climate change response of subtropical precipitation over land, PNAS, 117: 4539-4545, doi: 10.1073/pnas.1911015117
Gregory, J. M., T. Andrews, P. Ceppi, T. Mauritsen, and M. J. Webb (2020). How accurately can the climate sensitivity to CO2 be estimated from historical climate change? Clim Dyn, 54: 129-157, doi: 10.1007/s00382-019-04991-y
Zelinka, M. D., T. A. Myers, D. T. McCoy, S. Po-Chedley, P. M. Caldwell, P. Ceppi, S. A. Klein, and K. E. Taylor (2020). Causes of higher climate sensitivity in CMIP6 models, Geophys Res Lett, 47: e2019GL085782, doi: 10.1029/2019GL085782
Lin, Y.-J., Y.-T. Hwang, P. Ceppi, and J. M. Gregory (2019). Uncertainty in the evolution of climate feedback traced to the strength of the Atlantic Meridional Overturning Circulation, Geophys Res Lett, 46: 12331-12339, doi: 10.1029/2019GL083084.
Ceppi, P. and J. M. Gregory (2019). A refined model for the Earth's global energy balance, Clim Dyn, 53: 4781-4797, doi: 10.1007/s00382-019-04825-x
Ceppi, P. and T. G. Shepherd (2019). The role of the stratospheric polar vortex for the austral jet response to greenhouse gas forcing, Geophys Res Lett, 46: 6972-6979, doi: 10.1029/2019GL082883
Thompson, D. W. J., P. Ceppi, and Y. Li. (2019). A robust constraint on the temperature and height of the extratropical tropopause, J Climate, 32: 273-287, doi: 10.1175/JCLI-D-18-0339.1
Ceppi, P., G. Zappa, T. G. Shepherd, and J. M. Gregory (2018). Fast and slow components of the extratropical atmospheric circulation response to CO2 forcing, J Climate, 31: 1091-1105, doi: 10.1175/JCLI-D-17-0323.1
Ceppi, P. and J. M. Gregory (2017). Relationship of tropospheric stability to climate sensitivity and Earth's observed radiation budget, PNAS, 114: 13126-13131, doi: 10.1073/pnas.1714308114
Ceppi, P. and T. G. Shepherd (2017). Contributions of climate feedbacks to changes in atmospheric circulation, J Climate, 30: 9097-9118, doi: 10.1175/JCLI-D-17-0189.1
Tan, X., M. Bao, D. L. Hartmann, and P. Ceppi (2017). The role of synoptic waves in the formation and maintenance of the Western Hemisphere circulation pattern, J Climate, 30: 10259-10274, doi: 10.1175/JCLI-D-17-0158.1
Bao, M., X. Tan, D. L. Hartmann, and P. Ceppi (2017). Classifying the tropospheric precursor patterns of sudden stratospheric warmings, Geophys Res Lett, 44, doi: 10.1002/2017GL074611
Ceppi, P., F. Brient, M. D. Zelinka, and D. L. Hartmann (2017). Cloud feedback mechanisms and their representation in global climate models, WIREs Clim Change, 8: e465, doi: 10.1002/wcc.465
See the article summary at Advanced Science News
Ceppi, P., D. L. Hartmann, and D. T. McCoy (2016). Observational evidence for a negative shortwave cloud feedback in middle to high latitudes, Geophys Res Lett, 43, doi: 10.1002/2015GL067499
Ceppi, P. and D. L. Hartmann (2016). Clouds and the atmospheric circulation response to warming, J Climate, 29: 783-799, doi: 10.1175/JCLI-D-15-0394.1
Ceppi, P., D. L. Hartmann, and M. J. Webb (2016). Mechanisms of the negative shortwave cloud feedback in middle to high latitudes, J Climate, 29: 139-157, doi: 10.1175/JCLI-D-15-0327.1
McCoy, D. T., D. L. Hartmann, M. D. Zelinka, P. Ceppi, and D. P. Grosvenor (2015). Mixed-phase cloud physics and midlatitude cloud feedback in climate models, J Geophys Res Atmos, 120, doi: 10.1002/2015JD023603
Ceppi, P. and D. L. Hartmann (2015). Connections between clouds, radiation, and midlatitude dynamics: a review, Curr Clim Change Rep, 1: 94–102, doi: 10.1007/s40641-015-0010-x
Ceppi, P., M. D. Zelinka, and D. L. Hartmann (2014). The Response of the Southern Hemispheric Eddy-Driven Jet to Future Changes in Shortwave Radiation in CMIP5, Geophys Res Lett, 41, doi: 10.1002/2014GL060043
Hartmann, D. L. and P. Ceppi (2014). Trends in the CERES Data set 2000-2013: The Effects of Sea Ice and Jet Shifts and Comparison to Climate Models, J Climate, 27: 2444–2456, doi: 10.1175/JCLI-D-13-00411.1
Ceppi, P., Y.-T. Hwang, X. Liu, D. M. W. Frierson, and D. L. Hartmann (2013). The Relationship Between the ITCZ and the Southern Hemispheric Eddy-Driven Jet, J Geophys Res Atmos, 118: 5136–5146, doi: 10.1002/jgrd.50461
See the AGU Journal Highlight
Ceppi, P. and D. L. Hartmann (2013). On the Speed of the Eddy-Driven Jet and the Width of the Hadley Cell in the Southern Hemisphere, J Climate, 26: 3450–3465, doi: 10.1175/JCLI-D-12-00414.1
Ceppi, P., Y.-T. Hwang, D. M. W. Frierson, and D. L. Hartmann (2012). Southern Hemisphere jet latitude biases in CMIP5 models linked to shortwave cloud forcing, Geophys Res Lett, 39: L19701, doi: 10.1029/2012GL053115
Scherrer, S. C., P. Ceppi, M. Croci-Maspoli, and C. Appenzeller (2012). Snow-albedo feedback and Swiss spring temperature trends, Theor Appl Climatol, 110: 509–516, doi: 10.1007/s00704-012-0712-0
Ceppi, P., S. C. Scherrer, A. M. Fischer, and C. Appenzeller (2012). Revisiting Swiss temperature trends 1959–2008, Int J Climatol, 32: 203–213, doi: 10.1002/joc.2260
Ceppi, P., P. Forster (2023). Here’s what’s driving the record autumn heat (it’s not just carbon emissions), The Conversation.
Ceppi, P. (2022). Clouds. In: Thunberg, G. (ed.), The Climate Book. London: Penguin Books, pp. 60–61.
Ceppi, P. (2021). Why clouds make modelling climate change so complicated. Geographical.
Ceppi, P., R. Williams (2020). Why clouds are the missing piece in the climate change puzzle, The Conversation.
Ceppi, P., J. M. Gregory (2020). Climate sensitivity: What is it, and why is it important?, Grantham Institute Briefing note No 11, Imperial College London, doi: 10.25561/76744