Research Team

Combinatorics of Efficient Computations

Our group studies various aspects of efficient computations, including for instance approximation algorithms, online algorithms, exact algorithms, combinatorial optimization, and data structures, from (mostly) structural perspectives. The approaches typically view computational problems as simple structural problems about certain discrete structures and approach the problems through the study of intrinsic properties of such structures. 

Current active projects of our group include: 
  • Graph packing problems in general 

  • Packing and covering with "group constraints"

  • Online binary search trees  

Current Team members 
  1. Wanchote Jiamjitrak 
    PhD student, Aalto University

  2. Andreas Schmid 
    PhD student, Max Planck Institute for Informatics, Germany 

  3. Daniel Vaz 
    PhD student, Max Planck Institute for Informatics, Germany 

  4. Sumedha Uniyal 
    Visiting student from IDSIA, Switzerland  

Affiliated members and regular visitors 

Short-term Visitors  

  • Bundit Laekhanukit, Postdoc at Weizmann Institute of Science, Israel          [Mar 26 - Apr 8] 
  • Daniel Vaz, PhD student at Max-planck-institut für Informatik, DE                   [Mar 20 - Apr 1]
  • Syamantak Das, Postdoc at Universität Bremen, DE                                         [Mar 20-30]
  • Mayank Goswami, Assistant professor at CUNY, USA                                       [Jan 26-27] 
  • Thatchaphol Saranurak, PhD student at KTH, SE                                           [Sep 22-25, Oct 23-29]
  • Danupon Nanongkai, Assistant professor at KTH, SE                                    [Sep 22-25]
  • Andreas SchmidPhD student at Max-planck-institut für Informatik, DE         [Sep 12-24]
  • Daniel VazPhD student at Max-planck-institut für Informatik, DE                   [Sep 12-24]

Algorithms and Complexity at Aalto 
There are potentials to collaborate with other research groups at Aalto University in the themes of algorithms and complexity (e.g. distributed algorithms, natural computation, and combinatorial algorithms). Our students are encouraged to expand their research horizons by discussing with other research groups.