References

    1. Olshausen, B. A., & Field, D. J. (1996). Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381(6583), 607.
    2. Riesenhuber, M., & Poggio, T. (1999). Hierarchical models of object recognition in cortex. Nature neuroscience, 2(11), 1019-1025.
    3. Leeds, D. D., Seibert, D. A., Pyles, J. A., & Tarr, M. J. (2013). Comparing visual representations across human fMRI and computational vision. Journal of vision, 13(13), 25-25.
    4. Kruger, N., Janssen, P., Kalkan, S., Lappe, M., Leonardis, A., Piater, J., & Wiskott, L. (2013). Deep hierarchies in the primate visual cortex: What can we learn for computer vision?. IEEE transactions on pattern analysis and machine intelligence, 35(8), 1847-1871.
    5. Khaligh-Razavi, S. M., & Kriegeskorte, N. (2014). Deep supervised, but not unsupervised, models may explain IT cortical representation. PLoS Comput Biol, 10(11), e1003915.
    6. Cox, D. D., & Dean, T. (2014). Neural networks and neuroscience-inspired computer vision. Current Biology, 24(18), R921-R929.
    7. Yamins, D. L., Hong, H., Cadieu, C. F., Solomon, E. A., Seibert, D., & DiCarlo, J. J. (2014). Performance-optimized hierarchical models predict neural responses in higher visual cortex. Proceedings of the National Academy of Sciences, 111(23), 8619-8624.
    8. Cadieu, C. F., Hong, H., Yamins, D. L., Pinto, N., Ardila, D., Solomon, E. A., & DiCarlo, J. J. (2014). Deep neural networks rival the representation of primate IT cortex for core visual object recognition. PLoS Comput Biol, 10(12), e1003963.
    9. Serre, T. (2015). Hierarchical models of the visual system. Encyclopedia of computational neuroscience, 1309-1318.
    10. Güçlü, U., & van Gerven, M. A. (2015). Deep neural networks reveal a gradient in the complexity of neural representations across the ventral stream. Journal of Neuroscience, 35(27), 10005-10014.
    11. Kriegeskorte, N. (2015). Deep neural networks: a new framework for modeling biological vision and brain information processing. Annual Review of Vision Science, 1, 417-446.
    12. Kubilius, J., Bracci, S., & de Beeck, H. P. O. (2016). Deep neural networks as a computational model for human shape sensitivity. PLoS Comput Biol, 12(4), e1004896.
    13. Pramod, R. T., & Arun, S. P. (2016). Do computational models differ systematically from human object perception?. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 1601-1609).
    14. Svanera, M., Benini, S., Raz, G., Hendler, T., Goebel, R., & Valente, G. (2017). Deep driven fMRI decoding of visual categories. arXiv preprint arXiv:1701.02133.
    15. LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444.
    16. Pinto, N., Cox, D. D., & DiCarlo, J. J. (2008). Why is real-world visual object recognition hard?. PLoS Comput Biol, 4(1), e27.
    17. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems (pp. 1097-1105).
    18. Masquelier, T., & Thorpe, S. J. (2007). Unsupervised learning of visual features through spike timing dependent plasticity. PLoS Comput Biol, 3(2), e31.
    19. Wadhwa, A., & Madhow, U. (2016). Learning Sparse, Distributed Representations using the Hebbian Principle. arXiv preprint arXiv:1611.04228.
    20. Borji, A., & Itti, L. (2014). Human vs. computer in scene and object recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 113-120).
    21. Vanrullen, R. (2017). Perception Science in the age of Deep Neural Networks. Frontiers in Psychology, 8, 142.
    22. Scheirer, W. J., Anthony, S. E., Nakayama, K., & Cox, D. D. (2014). Perceptual annotation: Measuring human vision to improve computer vision. IEEE transactions on pattern analysis and machine intelligence, 36(8), 1679-1686.
    23. Fong, R., Scheirer, W., & Cox, D. (2017). Using human brain activity to guide machine learning. arXiv preprint arXiv:1703.05463.
    24. George L. Malcolm, Iris I.A. Groen, and Chris I. Baker, Making Sense of Real-World Scenes, Trends in Cognitive Sciences, November 2016, Vol. 20, No. 11, 2016.
    25. Samuel Ritter, David G.T. Barrett, Adam Santoro, Matt M. Botvinick, Cognitive Psychology for Deep Neural Networks: A Shape Bias Case Study, ICML 2017
    26. Anna Volokitin, Gemma Roig and Tomaso Poggio, Do Deep Neural Networks Suffer from Crowding? NIPS 2017.
    27. M Stettler, G Francis, Using a model of human visual perception to improve deep learning, Neural Networks, 2018.
    28. G. St-Yves, Thomas Naselaris, Generative Adversarial Networks Conditioned on Brain Activity Reconstruct Seen Images, arxiv, 2018.