#include <iostream>
#include <list>
#include <vector>
using namespace std;
//define a graph
class Graph {
// variable
int V; // number of vertex in a graph
list <int> *adj; // the adjacency lists of a vertex
public:
// constructor
Graph(int nVetex)
{
V = nVetex;
adj = new list<int>[nVetex];
}
// destructor
~Graph()
{
// nothing
}
//function
void addEdge(int start, int end)
{
adj[start].push_back(end);
}
void displayArray(vector<bool> &visit)
{
for(int i=0; i<visit.size();i++)
cout<< visit[i]<<",";
cout<<endl;
}
void displayList(list<int> & ls)
{
cout<<"Display a List:";
list<int>::iterator i;
for(i = ls.begin(); i!=ls.end();++i)
cout<<*i<<endl;
}
void BFS(int start)
{
list <int> workq;
// use a temporary array to save the visiting information
vector <bool> Visit(this->V);
for (int i=0; i<this->V; i++)
Visit[i] = false;
//first add the start node to the workq
Visit[start] = true;
workq.push_back(start);
while(!workq.empty())
{
// look for the other nodes in the graph
int current_node = workq.front();
workq.pop_front();
list<int> t = this->adj[current_node];
int n = t.size();
cout<<current_node<<" has "<<n<<" neibour nodes"<<endl;
displayList(t);
displayArray(Visit);
for(int k =0; k<n; k++)
{
int nex = t.front();
t.pop_front();
cout<< nex<<","<<Visit[nex]<<endl;
if(Visit[nex] != true)
{ // if not visited before, add it to the workq
cout<<"go here"<<endl;
Visit[nex] = true;
workq.push_back(nex);
}
}
displayArray(Visit);
cout<<"done for node"<<current_node<<endl;
}
}
void DFSUltus(int start, vector<bool> & Visit)
{
Visit[start] = true;
cout<<start<<endl;
list<int>::iterator i;
for(i=adj[start].begin();i!=adj[start].end();i++)
{
if(Visit[*i] == false)
DFSUltus(*i,Visit);
}
}
void DFS(int start)
{
vector<bool> Visit(this->V);
for(int i=0; i<Visit.size();i++)
Visit[i] = false;
DFSUltus(start, Visit);
}
};
// main function for breadth first search
int main()
{
// construct a graph
Graph G(6);
G.addEdge(0,3);
G.addEdge(1,3);
G.addEdge(1,2);
G.addEdge(1,4);
G.addEdge(2,5);
G.addEdge(3,5);
G.addEdge(5,3);
G.addEdge(3,1);
// BFS
//G.BFS(2);
G.DFS(2);
}
The following code is copied from GeeksforGeeks
// A C++ program for Dijkstra's single source shortest path algorithm.
// The program is for adjacency matrix representation of the graph
#include <stdio.h>
#include <limits.h>
// Number of vertices in the graph
#define V 9
// A utility function to find the vertex with minimum distance value, from
// the set of vertices not yet included in shortest path tree
int minDistance(int dist[], bool sptSet[])
{
// Initialize min value
int min = INT_MAX, min_index;
for (int v = 0; v < V; v++)
if (sptSet[v] == false && dist[v] <= min)
min = dist[v], min_index = v;
return min_index;
}
// A utility function to print the constructed distance array
int printSolution(int dist[], int n)
{
printf("Vertex Distance from Source\n");
for (int i = 0; i < V; i++)
printf("%d tt %d\n", i, dist[i]);
}
// Function that implements Dijkstra's single source shortest path algorithm
// for a graph represented using adjacency matrix representation
void dijkstra(int graph[V][V], int src)
{
int dist[V]; // The output array. dist[i] will hold the shortest
// distance from src to i
bool sptSet[V]; // sptSet[i] will true if vertex i is included in shortest
// path tree or shortest distance from src to i is finalized
// Initialize all distances as INFINITE and stpSet[] as false
for (int i = 0; i < V; i++)
dist[i] = INT_MAX, sptSet[i] = false;
// Distance of source vertex from itself is always 0
dist[src] = 0;
// Find shortest path for all vertices
for (int count = 0; count < V-1; count++)
{
// Pick the minimum distance vertex from the set of vertices not
// yet processed. u is always equal to src in the first iteration.
int u = minDistance(dist, sptSet);
// Mark the picked vertex as processed
sptSet[u] = true;
// Update dist value of the adjacent vertices of the picked vertex.
for (int v = 0; v < V; v++)
// Update dist[v] only if is not in sptSet, there is an edge from
// u to v, and total weight of path from src to v through u is
// smaller than current value of dist[v]
if (!sptSet[v] && graph[u][v] && dist[u] != INT_MAX
&& dist[u]+graph[u][v] < dist[v])
dist[v] = dist[u] + graph[u][v];
}
// print the constructed distance array
printSolution(dist, V);
}
// driver program to test above function
int main()
{
/* Let us create the example graph discussed above */
int graph[V][V] = {{0, 4, 0, 0, 0, 0, 0, 8, 0},
{4, 0, 8, 0, 0, 0, 0, 11, 0},
{0, 8, 0, 7, 0, 4, 0, 0, 2},
{0, 0, 7, 0, 9, 14, 0, 0, 0},
{0, 0, 0, 9, 0, 10, 0, 0, 0},
{0, 0, 4, 14, 10, 0, 2, 0, 0},
{0, 0, 0, 0, 0, 2, 0, 1, 6},
{8, 11, 0, 0, 0, 0, 1, 0, 7},
{0, 0, 2, 0, 0, 0, 6, 7, 0}
};
dijkstra(graph, 0);
return 0;
}