Monge Ampere's equations
Forzani, L and Maldonado, D. A MEAN VALUE INEQUALITY FOR NON-NEGATIVE SOLUTIONS TO THE LINEARIZED MONGE-AMPERE - EQUATION. To appear in Potential Analysis.
A new proof of Harnack's inequality for Elliptic Partial Differential Equations in Divergence form. Crescimbeni, Raquel; Forzani, Liliana; Perini, Alejandra. Electronic Journal of Differential Equations, Vol. 2007(2007), No. 38, pp. 1–12.
Recent progress on the Monge-Ampère equation. Forzani, Liliana; Maldonado, Diego The $p$-harmonic equation and recent advances in analysis, 189--198, Contemp. Math., 370, Amer. Math. Soc., Providence, RI, 2005.
Properties of the solutions to the Monge-Ampère equation. Forzani, Liliana; Maldonado, Diego. Nonlinear Anal. 57 (2004), no. 5-6, 815--829.
On geometric characterizations for Monge-Ampère doubling measures. Forzani, Liliana; Maldonado, Diego. J. Math. Anal. Appl. 275 (2002), no. 2, 721--732.
Hölder regularity of solutions of PDE's: a geometrical view. Aimar, H.; Forzani, L.; Toledano, R. Comm. Partial Differential Equations 26 (2001), no. 7-8, 1145--1173.
Balls and quasi-metrics: a space of homogeneous type modeling the real analysis related to the Monge-Ampère equation. Aimar, H.; Forzani, L.; Toledano, R. J. Fourier Anal. Appl. 4 (1998), no. 4-5, 377--381.