Journal Article

"All papers are equal, but some papers are more equal"

[1]        O. Babayomi, Z. Zhang, Z. Li, and K.-B. Park, “Bidirectional DC-DC converters for distributed energy resources: robust predictive control with structurally-adaptive extended state observers,” International Journal of Electrical Power and Energy Systems, vol. 158, Jul. 2024.

[2]        D. Kim, J. Chae, K.-B. Park, and G.-W. Moon, “A self-oscillated feedback network for push-pull resonant power converters,” IEEE Trans. Power Electronics, vol. 38, no. 11, pp. 14249-14261, Nov. 2023.

[3]        J.-E, Park, J.-K. Han, K.-B. Park, B.-H. Lee, and G.-W. Moon, “A new direct charging control for electric power systems in low earth orbit satellites,” IEEE Trans. Aerospace and Electronic Systems, vol. 50, no. 3, pp. 2566 – 2578, Jun. 2023.

[4]        X. Yang, K. Wang, J. Kim, K.-B. Park, “Artificial neural network-based FCS-MPC for three-level inverters,” Journal of Power Electronics, vol. 22, no. 12, pp. 2158-2165, Dec. 2022.

[5]        S. Lee, H. Jin, L. F. Vecchietti, J. Hong, K.-B. Park, P. N. Son, and D. Har, “Cooperative decentralized peer-to-peer electricity trading of nanogrid clusters based on predictions of load demand and PV power generation using a gate recurrent unit model,” IET Renewable Power Generation, vol. 15, no. 15, pp. 3505-3523, Nov. 2021.

[6]        K.-B. Park, F. Kieferndorf, U. Drofenik, S. Pettersson, and F. Canales, “Optimization of LCL filter with integrated intercell transformer for two-interleaved high power grid-tied converters,” IEEE Trans. Power Electronics, vol. 35, no. 3, pp. 2317-2333, Mar. 2020.

[7]        K.-B. Park, “Partial series resonant coupled-inductor boost converter for high step-up DC-DC application,” EPE Journal, vol. 28, no. 1, pp. 14-27, Jan. 2018.

[8]        K.-B. Park, F. Kieferndorf, U. Drofenik, S. Pettersson, and F. Canales, “Weight minimization of LCL filters for high power converters: Impact of PWM method on power loss and power density,” IEEE Trans. Industry Applications. vol. 53, no. 3, pp. 2282-2296, May/Jun. 2017.

[9]        H.-S. Youn, J.-S. Park, K.-B. Park, J.-I. Baek, and G.-W. Moon, “A digital predictive peak current control for power factor correction with low-input current distortion,” IEEE Trans. Power Electronics. vol. 31, no. 1, pp. 900-912, Jan. 2016.

[10] J.-B. Lee, K.-B. Park, J.-K. Kim, H.-S. Youn, and G.-W. Moon, “A new center-tapped half-bridge zeta converter with small transformer dc-offset current and low voltage stress,” IEEE Trans. Power Electronics, vol. 30, no. 12, pp. 6593-6603, Dec. 2015.

[11] H.-S. Kim, J.-K. Kim, K.-B. Park, H.-W. Seong, G.-W. Moon, and M.-J. Youn, “On/off control of boost PFC converters to improve light load efficiency in paralleled power supply units for servers,” IEEE Trans. Industrial Electronics, vol. 61, no. 3, pp. 1235-1242, Mar. 2014.

[12] H.-S. Kim, H.-W. Seong, J.-H. Cho, J.-B. Lee, K.-B. Park, G.-W. Moon, and M.-J. Youn, “Start-up control to prevent overcurrent during hot-swap in paralleled dc-dc converters,” IEEE Trans. Industrial Electronics, vol. 60, no. 12, pp. 5558-5574, Dec. 2013.

[13] B.-H. Lee, K.-B. Park, C.-E. Kim, and G.-W. Moon, “No-load power reduction technique for AC/DC adapters,” IEEE Trans. Power Electronics, vol. 27, no. 8, pp. 3685-3694, Aug. 2012.

[14] B.-C. Kim, K.-B. Park, and G.-W. Moon, “Asymmetric PWM control scheme during hold-up time for LLC resonant converter,” IEEE Trans. Industrial Electronics, vol. 59, no. 7, pp. 2992-2997, Jul. 2012.

[15] S.-H. Park, K.-B. Park, H.-S. Kim, G.-W. Moon, and M.-J. Youn, “Single-magnetic cell-to-cell charge equalization converter with reduced number of transformer windings,” IEEE Trans. Power Electronics, vol. 27, no. 6, pp. 2900-2911, Jun. 2012.

[16] K.-B. Park, B.-H. Lee, G.-W. Moon, and M.-J. Youn, "Analysis on center-tap rectifier voltage oscillation of LLC resonant converter," IEEE Trans. Power Electronics, vol. 27, no. 6, pp. 2684-2989, Jun. 2012.

[17] K.-B. Park, G.-W. Moon, and M.-J. Youn, "High step-up boost converter integrated with a transformer-assisted auxiliary circuit employing quasi-resonant operation," IEEE Trans. Power Electronics, vol. 27, no. 4, pp. 1974-1984, Apr. 2012.

[18] H.-W. Seong, H.-S. Kim, K.-B. Park, G.-W. Moon, and M.-J. Youn, “High step-up DC-DC converters using zero-voltage-switching boost integration technique and light-load frequency modulation control,” IEEE Trans. Power Electronics, vol. 27, no. 3, pp. 1383-1400, Mar. 2012.

[19] J.-H. Cho, K.-B. Park, J.-S. Park, G.-W. Moon, and M.-J. Youn, “Design of digital offset compensator eliminating transformer magnetizing current offset of phase-shift full-bridge converter,” IEEE Trans. Power Electronics, vol. 27, no. 1, pp. 331-341, Jan. 2012.  

[20] K.-B. Park, G.-W. Moon, and M.-J. Youn, "Series-input series-rectifier interleaved forward converter with a common transformer-reset-circuit for high-input-voltage-applications," IEEE Trans. Power Electronics, vol. 26, no. 11, pp. 3242-3253, Nov. 2011.

[21] K.-B. Park, G.-W. Moon, and M.-J. Youn, "Two-switch active-clamp forward converter with one clamp diode and delayed turn-off gate signal," IEEE Trans. Industrial Electronics, vol. 58, no. 10, pp. 4768-4772, Oct. 2011.

[22] K.-B. Park, G.-W. Moon, and M.-J. Youn, "Two-transformer current-fed converter with a simple auxiliary circuit for a wide duty range," IEEE Trans. Power Electronics, vol. 26, no. 7, pp. 1901-1911, Jul. 2011.

[23] M.-B. Kim, K.-B. Park, and M.-J. Youn, “A novel single-stage AC/DC converter with quasi-resonant zero-voltage-switching for high power factor and high efficient applications,” International Journal of Circuit Theory and Applications, vol. 39, no. 7, pp. 733-749, Jul. 2011.

[24] K.-B. Park, G.-W. Moon, and M.-J. Youn, "Non-isolated high step-up stacked converter based on boost-integrated isolated converter," IEEE Trans. Power Electronics, vol. 26, no. 2, pp. 577-587, Feb. 2011.

[25] B.-C. Kim, K.-B. Park, C.-E. Kim, B.-H. Lee, and G.-W. Moon, "LLC resonant converter with adaptive link voltage variation for a high power density adapter," IEEE Trans. Power Electronics, vol. 25, no. 9, pp. 2248-2252, Sep. 2010.

[26] K.-B. Park, G.-W. Moon, and M.-J. Youn, "Nonisolated high step-up boost converter integrated with sepic converter," IEEE Trans. Power Electronics, vol. 25, no. 9, pp. 2266-2275, Sep. 2010.

[27] K.-B. Park, C.-E. Kim, G.-W. Moon, and M.-J. Youn, "Three-switch active-clamp forward converter with low switch voltage stress and wide ZVS range for high input voltage applications," IEEE Trans. Power Electronics, vol. 25, no. 4, pp. 889-898, Apr. 2010.

[28] H.-S. Park, C.-H. Kim, K.-B. Park, G.-W. Moon, and J.-H. Lee, “Design of a charge equalizer based on battery modularization,” IEEE Trans. Vehicular Technology, vol. 58, no. 7, pp. 3216-3223, Sep. 2009.

[29] K.-B. Park, C.-E. Kim, G.-W. Moon, and M.-J. Youn, “PWM resonant single-switch isolated converter,” IEEE Trans. Power Electronics, vol. 24, no. 8, pp. 1876-1886, Aug. 2009.

[30] K.-B. Park, S.-W. Choi, C.-E. Kim, G.-W. Moon, and M.-J. Youn, “An AC-PDP single sustaining driver employing voltage stress reduction technique,” IEEE Trans. Power Electronics, vol. 24, no. 4, pp. 1124-1128, Apr. 2009.

[31] K.-B. Park, C.-E. Kim, G.-W. Moon, and M.-J. Youn, “A double ended ZVS half-bridge zeta converter,” IEEE Trans. Power Electronics, vol. 2, no. 6, pp. 2838-2846, Nov. 2008.

[32] K.-B. Park, C.-E. Kim, G.-W. Moon, and M.-J. Youn, “Voltage oscillation reduction technique for phase-shift full-bridge converter,” IEEE Trans. Industrial Electronics, vol. 54, no. 5, pp. 2779-2790, Oct. 2007.

[33] B.-H. Lee, C.-E. Kim, K.-B. Park, and G.-W. Moon, “A new single-stage PFC AC/DC converter with low link-capacitor voltage,” Journal of Power Electronics, vol. 7, no. 4, pp. 328-335, Oct. 2007.

[34] K.-B. Park, C.-E. Kim, G.-W. Moon, and M.-J. Youn “A new high efficiency PWM single-switch isolated converter,” Journal of Power Electronics, vol. 7, no. 4, pp. 301-309, Oct. 2007.

[35] C.-E. Kim, S.-K. Han, K.-B. Park, and G.-W. Moon, “A new high efficiency bidirectional DC/DC converter for HEV 42 V power system,” Journal of Power Electronics, vol. 6, no. 3, pp. 271-278, Jul. 2006.

 


F305 Faculty Wing, KAIST 193 Munji-ro, Yuseong-gu, Daejeon, 34051, Republic of Korea